Young people are a traditional risk group for radicalization and involvement in protest and extremist activities. The relevance of this topic is due to the growing threat of youth radicalization, the expansion of the activities of extremist organizations, and the need to organize high-quality preventive work in educational organizations at various levels. The article provides an overview of research on the topic under consideration and also presents the results of a series of surveys in general educational institutions and organizations of secondary vocational education (n = 11,052), universities (n = 3966) located in the Arctic zone of the Russian Federation. The results of the study on aspects of students’ ideas about extremism are presented in terms of assessing their own knowledge about extremism, the presence/absence of radically minded people around them, determining the degree of threat from the activities of extremist groups for themselves and their social environment, and identifying approaches to preventing the growth of extremism in society. Conclusions are drawn about the need to improve preventive work models in educational organizations towards a targeted (group) approach.
Identify and diagnosis of homogenous units and separating them and eventually planning separately for each unit are considered the most principled way to manage units of forests and creating these trustable maps of forest’s types, plays important role in making optimum decisions for managing forest ecosystems in wide areas. Field method of circulation forest and Parcel explore to determine type of forest require to spend cost and much time. In recent years, providing these maps by using digital classification of remote sensing’s data has been noticed. The important tip to create these units is scale of map. To manage more accurate, it needs larger scale and more accurate maps. Purpose of this research is comparing observed classification of methods to recognize and determine type of forest by using data of Land Cover of Modis satellite with 1 kilometer resolution and on images of OLI sensor of LANDSAT satellite with 30 kilometers resolution by using vegetation indicators and also timely PCA and to create larger scale, better and more accurate resolution maps of homogenous units of forest. Eventually by using of verification, the best method was obtained to classify forest in Golestan province’s forest located on north-east of country.
The study of authoritarian leadership has undergone significant development, with researchers exploring its different dimensions and consequences. This leadership style, characterized by a top-down approach and centralized decision-making authority, has been extensively examined in psychology, organizational behavior, and management literature. Scholars have delved into the effects of authoritarian leadership on various aspects of organizations such as employee satisfaction, motivation levels, productivity rates, turnover rates, and team dynamics. The research landscape surrounding authoritarian leadership has witnessed a recent surge in interest as scholars strive to understand its intricate connections with different variables. The primary objective of this study is to conduct a comprehensive bibliometric analysis on authoritarian leadership, aiming to identify the key research areas, influential authors, prominent journals in the field, and citation patterns. To our knowledge, no bibliometric analysis on authoritarian leadership can be found in the Scopus database, highlighting the novelty of our research. Through a source-based examination of scholarly articles and their citations pertaining to authoritarian leadership, this analysis offers valuable insights into the current state of research in this domain. By focusing on publications from the past decade onwards, we aim to uncover trends and potential gaps within existing literature while also providing guidance for future research endeavors. Our research findings will provide valuable insights into the phenomenon of authoritarian leadership, contributing to a deeper understanding of its implications. By delving into this topic, we hope to pave the way for future studies and investigations in this field that can build upon our findings and expand knowledge even further.
The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
Copyright © by EnPress Publisher. All rights reserved.