The paper deals with the issues of the influence of forest cover on the average annual runoff of rivers in the Pripyat River basin. In the study area, under the influence of solar radiation, the temperature of the air and the soil surface increases, evaporation from the water surface also increases, and the moisture content of the upper layers of the soil decreases. In general, with an increase in forest cover, the annual layer of the runoff of the studied rivers increases, as well as with an increase in the amount of precipitation (in contrast to the runoff of short-term floods). However, with a forest cover of more than 20%–30% and a relatively small amount of precipitation, the runoff decreases, which is associated with the retention of part of the precipitation by the forest cover. With a large amount of precipitation and low forest cover, the runoff also decreases, which is probably due to the loss of precipitation water for evaporation, etc. The conducted studies show that, just as the forest affects water resources, the flow of moisture to watersheds also affects the state of forest systems. Moreover, this interaction is expressed by evaporation from forests. Under influence of change of a climate growth of evaporation is observed.
With the continuous development of facilities and horticulture, the area of vegetable planting in facilities increased year by year. Watermelon (Citrullus vulgaris Schrad) as the main cultivars within the facility, the continuous cropping problem is very serious, resulting in continuous cropping obstacles become increasingly obvious, the incidence of fusarium wilt increased year by year. Grafted watermelon roots developed to improve the growth of grafted roots of the conditions, resulting in robust plant growth. At the same time, the use of different purposes of the rootstock can make watermelon in different soil conditions under normal growth, such as the use of low temperature, drought, salt tolerance, barren and other characteristics of the rootstock. Secondly, the rootstock of the strong absorption of water absorption capacity, to promote the growth of grafted watermelon plants strong, large watermelon fruit, high yields. In addition, grafted watermelon seedlings grow fast early, for early maturing cultivation and overcome the seedless watermelon early growth slow defects is extremely favorable. So the use of pumpkin as a watermelon grafting rootstock, can effectively improve the effect of watermelon resistance to Fusarium wilts. And provide the theoretical basis and scientific basis for the further study of photosynthetic characteristics, disease resistance breeding and effective control of watermelon. In this experiment, the watermelon varieties with different resistance to fusarium wilt were selected, and the anti-fusarium wilt watermelon was studied systematically. There are changes in physiological characteristics during growth and development. In conclusion, grafting promotes the growth of watermelon and physiological characteristics of the index rose.
KEYWORDS: watermelon; fusarium wilt; growth period; physiological characteristics
Small watershed ecological compensation is an important economic means to solve the contradiction between protecting the ecological environment and developing the economy. Taking the Changtian small watershed in the Xixiu District of Anshun City as an example, this paper uses the ecological service function value method to roughly calculate the ecological service function value of the small watershed ecosystem: the ecological service function value of the Changtian small watershed is 913.586 million yuan, and the total amount of ecological compensation is 11.6245 million yuan, of which the farmland system compensation is 1.3194 million yuan, the forest system compensation is 7.5336 million yuan, and the water system compensation is 256,000 yuan, The compensation for the fruit forest system is 2,515,500 yuan. Based on the value of ecosystem service function, the compensated and non-compensated ecosystem service functions are distinguished, and the equivalent factors that different ecosystems can provide compensated ecosystem functions are expressed, so that the determination of ecological compensation amount is scientific and more accurate, and then provides a basis for the determination of ecological compensation standard of the small watershed.
Soil and groundwater remediation act has been enacted and executed since year 2000 in Taiwan. It has been ten good years till today where lots of remediation techniques progressively employed to improve Taiwan soil and groundwater resource quality. Regulatory agencies, academia, remediation consulting firms, on-site professional engineers all have contribute the proud ten years in terms of soil and groundwater clean-up contribution. However, some of technologies were un-environmental friendly even detrimental and damage to Taiwan precious soil and groundwater resources. In Article one of the current Taiwan soil and groundwater Act, it clearly stated that soil is a precious nature resources. Soil definitely is not a waste, shame on us most of current most commonly employed remediation are unlawful and merely aiming to save time and money consideration without any care to our land. Dig-and-dump and soil acid washing are damaged employed in almost every single local environment agency soil clean-up project. Lot of money, effort and time has been spent during past ten years. Most of the spending is not improving soil quality using Green approach.
The agronomic and oenological behavior of the Pinot noir grape variety was studied in relation to different rootstocks on the Agroscope estate in Leytron (VS): 3309 C, 5 BB, Fercal, 41 BMGt, Riparia Gloire, 420 AMGt, 101-14 MGt and 161-49 C. Rootstock primarily influenced vigor, speed of vine establishment, and mineral nutrition of the graft. Riparia Gloire, 41 BMGt, 420 AMGt and 161-49 C rootstocks were less vigorous and, for the last three, induced a lower nitrogen and potassium supply leading to the production of slightly more acidic wines. The less vigorous rootstocks and 101-14 MGt were slightly more sensitive to water stress.
Copyright © by EnPress Publisher. All rights reserved.