The erudite priest Marciano Di Leo (1751–1819), a prominent personality in the historical and geographical panorama of his time, not only in his home territory, authored a vast literary and poetic production but also tried his hand at producing some maps, referring to a province of the Kingdom of Naples. At a time when the principles of geodetic cartography had become increasingly known, even locally, hand in hand with improvements in technology and accuracy of measurements, the author reflected on the historical narratives of the progress of the European (and Neapolitan) Enlightenment and translated them into an unpublished manuscript of statistical, historical, and geographical nature, accompanied by numerous maps of various scales. The rediscovery of a largely unknown—and therefore not very thorough—minor cartographic production underscores the spread, even in more marginal contexts, of the most innovative ideas and increasingly precise scientific foundations in the cartographic-mathematical representation of the territory. It also illustrates the role of a number of intellectuals in the service of the political choices of their time, in an attempt—often unrealized—to bring about a decisive change of course in public administration, in accordance with Enlightenment ideals and in the spirit of reform that spread throughout Europe thanks to the French Revolution.
Money laundering has become a vital issue all over the world especially in the emerging economy over the last two decades. Till now, the developing and emerging countries face challenges about the remedies and inceptions of anti-money laundering issues. The objective of the study is to provide a thorough picture of the diversified movements of academic research on money laundering and anti-money laundering activities all over the world. This study aims at exploring the contemporary issues in Anti-money laundering based on the academic points of view. Further, the study is explored to render a portrayal of anti-money laundering activities from an emergency country context. A review of publicly available reports, published documents, daily newspapers, case studies, and previous academic research comprised the main sources of data for the study. It is found that the contemporary money laundering and anti-money laundering academic research might be classified into four broad categories. An emerging country like Bangladesh has taken little initiative to inductee anti-money laundering initiatives. It implies that for the successful implementation of anti-money laundering activities, good governance along with a congenial regulatory framework is a prerequisite in an emerging country context. In addition, the machine learning may enhance the quality of money laundering detections in Bangladesh.
Natural forests and abandoned agricultural lands are increasingly replaced by monospecific forest plantations that have poor capacity to support biodiversity and ecosystem services. Natural forests harbour plants belonging to different mycorrhiza types that differ in their microbiome and carbon and nutrient cycling properties. Here we describe the MycoPhylo field experiment that encompasses 116 woody plant species from three mycorrhiza types and 237 plots, with plant diversity and mycorrhiza type diversity ranging from one to four and one to three per plot, respectively. The MycoPhylo experiment enables us to test hypotheses about the plant species, species diversity, mycorrhiza type, and mycorrhiza type diversity effects and their phylogenetic context on soil microbial diversity and functioning and soil processes. Alongside with other experiments in the TreeDivNet consortium, MycoPhylo will contribute to our understanding of the tree diversity effects on soil biodiversity and ecosystem functioning across biomes, especially from the mycorrhiza type and phylogenetic conservatism perspectives.
Objective: The influence of climate on forest stands cannot be ignored, but most of the previous forest stand growth models were constructed under the presumption of invariant climate and could not estimate the stand growth under climate change. The model was constructed to provide a theoretical basis for forest operators to take reasonable management measures for fir under the influence of climate. Methods: Based on the survey data of 638 cedar plantation plots in Hunan Province, the optimal base model was selected from four biologically significant alternative stand basal area models, and the significant climate factors without serious covariance were selected by multiple stepwise regression analysis. The optimal form of random effects was determined, and then a model with climatic effects was constructed for the cross-sectional growth of fir plantations. Results: Richards formula is the optimal form of the basic model of stand basal area growth. The coefficient of adjustment was 0.8355; the average summer maximum temperature and the water vapor loss in Hargreaves climate affected the maximum and rate of fir stand stand growth respectively, and were negatively correlated with the stand growth. The adjusted coefficient of determination of the fir stand area break model with climate effects was 0.8921, the root mean square error (RMSE) was 3.0792, and the mean relative error absolute value (MARE) was 9.9011; compared with the optimal base model, improved by 6.77%, RMSE decreased by 19.04%, and MARE decreased by 15.95%. Conclusion: The construction of the stand cross-sectional area model with climate effects indicates that climate has a significant influence on stand growth, which supports the rationality of considering climate factors in the growth model, and it is important for the regional stand growth harvest and management of cedar while improving the accuracy and applicability of the model.
In order to study the temperature change trend of the surrounding geotechnical soil during the operation and thermal recovery of the medium-deep geothermal buried pipe and the influence of the geotechnical soil on the operational stability of the vertical buried pipe after thermal recovery. Based on the data of geological stratum in Guanzhong area and the actual engineering application of medium-deep geothermal buried pipe heating system in Xi’an New Area, the influence law of medium-deep geothermal buried pipe heat exchanger on surrounding geotechnical soil is simulated and analyzed by FLUENT software. The results show that: after four months of heating operation, in the upper layer of the geotechnical soil, the reverse heat exchange zone appears due to the higher fluid temperature; in the lower layer of the geotechnical soil, the temperature decreases more with the increase of depth and shows a linear increase in the depth direction; without considering the groundwater seepage, after eight months of thermal recovery of the geotechnical soil after heating, the maximum temperature difference after recovery is 3.02 ℃, and the average temperature difference after recovery is 1.30 ℃ The maximum temperature difference after recovery was 3.02 ℃ and the average temperature difference after recovery was 1.30 ℃. The geotechnical thermal recovery temperature difference has no significant effect on the long-term operation of the buried pipe, and it can be operated continuously and stably for a long time. Practice shows that due to the influence of various factors such as stratigraphic structure, stratigraphic pressure, radioactive decay and stratigraphic thermal conductivity, the actual stratigraphic temperature below 2000m recovers rapidly without significant temperature decay, fully reflecting the characteristics of the Earth’s constant temperature body.
Copyright © by EnPress Publisher. All rights reserved.