The use of plant viruses as bioherbicides represents a fascinating and promising frontier in modern agriculture and weed management. This review article delves into the multifaceted world of harnessing plant viruses for herbicidal purposes, shedding light on their potential as eco-friendly, sustainable alternatives to traditional chemical herbicides. We begin by exploring the diverse mechanisms through which plant viruses can target and control weeds, from altering gene expression to disrupting essential physiological processes. The article highlights the advantages of utilizing plant viruses, such as their specificity for weed species, minimal impact on non-target plants, and a reduced environmental footprint. Furthermore, we investigate the remarkable versatility of plant viruses, showcasing their adaptability to various weed species and agricultural environments. The review delves into the latest advancements in genetic modification techniques, which enable the engineering of plant viruses for enhanced herbicidal properties and safety. In addition to their efficacy, we discuss the economic and ecological advantages of using plant viruses as bioherbicides, emphasizing their potential to reduce chemical herbicide usage and decrease the development of herbicide-resistant weeds. We also address the regulatory and safety considerations associated with the application of plant viruses in agriculture. Ultimately, this review article underscores the immense potential of plant viruses as bioherbicides and calls for further research, development, and responsible deployment to harness these microscopic agents in the ongoing quest for sustainable and environmentally friendly weed management strategies.
The purpose of this study is to investigate customer satisfaction with quality of service known as SERVQUAL improvement or service quality competitiveness in emerging markets. Using Indonesian government medical care as an example the author examines the satisfaction of patients. Information and data were collected through a survey of 399 BPJS users in Indonesia. All data were analyzed using Smart PLS. This study demonstrates that there is a negative value associated with the five-dimensional gap. As a result, the care provided to BPJS patients is below par. Specifically, the sensitivity dimension has the largest disparity at 0.15, while the physical evidence dimension has the smallest at 0.49. In order to raise the level of service provided, it may be necessary to take direct measures or examine tangible evidence. This study develops the relationship between different quality service models. There appears to be a substantial increase in the body of literature in the area of service quality, allowing for constant updates and the incorporation of the lessons learned from the experiences of the departed. These revised guidelines are intended to aid SERVQUAL study participants. The study gives practical support to academics and practitioners in directing service quality improvement through the use of data collected from large-scale surveys of patients and medical professionals as doctors in Indonesia.
Plasma thermal gasification can be one of the most relevant and environmentally friendly technologies for waste treatment and has gained interest for its use in thethermos-conversion of biomass. In this perspective, the objective of this study is to evaluate the gasification of sugarcane bagasse by studying the effective areas of operation of this process and to establish a comparison with conventional autothermal gasification. A thermochemical equilibrium model was used to calculate the indicators that characterize the performance of the process on its own and integrated with a combined cycle. As a result, it was obtained that plasma and gasification of bagasse is technically feasible for the specific net electrical production of 4 MJ with 30 % electrical efficiency, producing a gas with higher calorific value than autothermal gasification. The operating points where the electrical energy production and the cold gas efficiency reach their highest values were determined; then the effects of the operational parameters on these performance indicators were analyzed.
This paper uses Public Choice analysis to examine the case for and experience with Public-Private Partnerships (PPPs). A PPP is a contractual platform which connects a governmental body and a private entity. The goal is to provide a public sector program, service, or asset that would normally be provided exclusively by a public sector entity. This paper focuses on PPPs in developed countries, but it also draws on studies of PPPs in developing countries. The economics literature generally defines PPPs as long-term contractual arrangements between a public authority (local or central government) and a private supplier for the delivery of services. The private sector supplier takes responsibility for building infrastructure components, securing financing of the investment, and then managing and maintaining this facility.
However, in addition to those formed through contracts, PPPs may take other forms such as those developed in response to tax subvention or coercion, as in the case of regulatory mandates. A key element of PPP is that the private partner takes on a significant portion of the risk through a schedule of specified remuneration, contingency payments, and provision for dispute resolution. PPPs typically are long-term arrangements and involve large corporations on the private side, but may also be limited to specific phases of a project.
The types of PPPs discussed in this paper exclude arrangements which may result from government mandates such as the statutory emission mandates imposed on automobile manufacturers and industrial facilities (e.g., power plants). It also excludes PPP-like organizations resulting from US section 501(c)(3) of the Internal Revenue Code, which provides tax subsidies for certain public charities, scientific research organizations, and organizations whose goals are to prevent cruelty to animals or erect public monuments at no expense to the government. This paper concludes that an array of Public Choice tools are applicable to understanding the emergence, success, or failure of PPPs. Several short case studies are provided to illustrate the practicalities of PPPs.
The properties of the beta batteries are compared, which are made on the basis of the different β-isotopes with beta decay. Tritium and Ni-63 make it possible to make β-sources of high activity, without harmful associated emissions, with low self-absorption, emitting high-energy β-electrons that penetrate deep into the semiconductor and generate a large number of electron-hole pairs. The efficiency of beta batteries needs to be analyzed based on the real energy distribution of β-electrons. It makes possible to obtain the real value of the energy absorbed inside the β-source, correctly estimate the amount of self-absorption of the β-electrons and part of the β-electronsthere is a penetrate into the semiconductor, the number of electrons and holes that are generated in the semiconductor, and the magnitude of the idling voltage. Formulas for these quantities are calculated in this paper.
Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
Copyright © by EnPress Publisher. All rights reserved.