Oerke EC. Crop losses to pests. The Journal of Agricultural Science 2006; 144(1): 31–43. doi: 10.1017/S0021859605005708
Duke SO. The history and current status of glyphosate. Pest Management Science 2018; 74(5): 1027–1034. doi: 10.1002/ps.4652
Heap I. Global perspective of herbicide‐resistant weeds. Pest Management Science 2014; 70(9): 1306–1315. doi: 10.1002/ps.3696
Charudattan R. Use of plant viruses as bioherbicides: The first virus‐based bioherbicide and future opportunities. Pest Management Science. doi: 10.1002/ps.7760
Tatineni S, Hein GL. Plant viruses of agricultural importance: Current and future perspectives of virus disease management strategies. Phytopathology 2023; 113(2): 117–141. doi: 10.1094/PHYTO-05-22-0167-RVW
Charudattan R, Hiebert E. New bioherbicide composed of a plant virus. International Pest Control 2015; 57(2): 85–87.
Roossinck MJ. Mechanisms of plant virus evolution. Annual Review of Phytopathology 1997; 35(1): 191–209. doi: 10.1146/annurev.phyto.35.1.191
Kogovšek P, Pompe‐Novak M, Baebler Š, et al. Aggressive and mild Potato virus Y isolates trigger different specific responses in susceptible potato plants. Plant Pathology 2010; 59(6): 1121–1132. doi: 10.1111/j.1365-3059.2010.02340.x
Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany 2012; 63(10): 3523–3543. doi: 10.1093/jxb/ers100
Rybicki EP. Plant-produced vaccines: Promise and reality. Drug Discovery Today 2009; 14(1-2): 16–24. doi: 10.1016/j.drudis.2008.10.002
Zimdahl RL. Fundamentals of Weed Science. Academic Press; 2018. doi: 10.1016/C2015-0-04331-3
Scholthof KBG, Adkins S, Czosnek H, et al. Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 2011; 12(9): 938–954. doi: 10.1111/j.1364-3703.2011.00752.x
Cañizares MC, Nicholson L, Lomonossoff GP. Use of viral vectors for vaccine production in plants. Immunology and Cell Biology 2005; 83(3): 263–270. doi: 10.1111/j.1440-1711.2005.01339.x
Dunoyer P, Voinnet O. The complex interplay between plant viruses and host RNA-silencing pathways. Current Opinion in Plant Biology 2005; 8(4): 415–423. doi: 10.1016/j.pbi.2005.05.012
Baulcombe DC. VIGS, HIGS and FIGS: Small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts. Current Opinion in Plant Biology 2015; 26: 141–146. doi: 10.1016/j.pbi.2015.06.007
Gressel J. Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Management Science 2011; 67(3): 253–257. doi: 10.1002/ps.2071
Vreysen MJB, Robinson AS, Hendrichs J, Kenmore P. Area-wide integrated pest management (AW-IPM): Principles, practice and prospects. In: Vreysen MJB, Robinson AS, Hendrichs J (editors). Area-wide Control of Insect Pests: From Research to Field Implementat
Owen MDK, Zelaya IA. Herbicide‐resistant crops and weed resistance to herbicides. Pest Management Science 2005; 61(3): 301–311. doi: 10.1002/ps.1015
Wolt JD, Keese P, Raybould A, et al. Problem formulation in the environmental risk assessment for genetically modified plants. Transgenic Research 2010; 19(3): 425–436. doi: 10.1007/s11248-009-9321-9
Hokkanen HM, Pimentel D. New associations in biological control: Theory and practice. The Canadian Entomologist 1989; 121(10): 829–840. doi: 10.4039/Ent121829-10
Hoagland RE, Douglas Boyette C, Weaver MA, Abbas HK. Bioherbicides: Research and risks. Toxin Reviews 2007; 26(4): 313–342. doi: 10.1080/15569540701603991
Green S. A review of the potential for the use of bioherbicides to control forest weeds in the UK. Forestry 2003; 76(3): 285–298. doi: 10.1093/forestry/76.3.285
Bahadur S, Verma SK, Prasad SK, et al. Eco-friendly weed management for sustainable crop production—A review. Journal Crop and Weed 2015; 11(1): 181–189.
Rai M, Zimowska B, Shinde S, Tres MV. Bioherbicidal potential of different species of Phoma: Opportunities and challenges. Applied Microbiology and Biotechnology 2021; 105(8): 3009–3018. doi: 10.1007/s00253-021-11234-w
Singh H, Sharma A, Bhardwaj SK, et al. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environmental Science: Processes & Impacts 2021; 23(2): 213–239. doi: 10.1039/d0em00404a
Kremer RJ. Bioherbicide development and commercialization: Challenges and benefits. In: Koul O (editor). Development and Commercialization of Biopesticides: Costs and Benefits. Academic Press; 2023. pp. 119–148. doi: 10.1016/B978-0-323-95290-3.00016-9
Koch A. Development of RNAi-based biopesticides, regulatory constraints, and commercial prospects. In: Koul O (editor). Development and Commercialization of Biopesticides: Costs and Benefits. Academic Press; 2023. pp. 149–171. doi: 10.1016/B978-0-323-9529
Iyiola AO, Kolawole AS, Oyewole EO. Sustainable alternatives to agrochemicals and their socio-economic and ecological values. In: In: Ogwu MC, Chibueze Izah S (editors). One Health Implications of Agrochemicals and their Sustainable Alternatives. Springer
Rehman A, Farooq M. Challenges, constraints, and opportunities in sustainable agriculture and environment. In: Farooq M, Gogoi N, Pisante M (editors). Sustainable Agriculture and the Environment. Academic Press; 2023. pp. 487–501. doi: 10.1016/B978-0-323-
Marrone PG. Pesticidal natural products–status and future potential. Pest Management Science 2019; 75(9): 2325–2340. doi: 10.1002/ps.5433