In most studies on hydroclimatic variability and trend, the notion of change point detection analysis of time series data has not been considered. Understanding the system is crucial for managing water resources sustainably in the future since it denotes a change in the status quo. If this happened, it is difficult to distinguish the time series data’s rising or falling tendencies in various areas when we look at the trend analysis alone. This study’s primary goal was to describe, quantify, and confirm the homogeneity and change point detection of hydroclimatic variables, including mean annual, seasonal, and monthly rainfall, air temperature, and streamflow. The method was employed using the four-homogeneity test, i.e., Pettitt’s test, Buishand’s test, standard normal homogeneity test, and von Neumann ratio test at 5% significance level. In order to choose the homogenous stations, the test outputs were divided into three categories: “useful”, “doubtful”, and “suspect”. The results showed that most of the stations for annual rainfall and air temperature were homogenous. It is found that 68.8% and 56.2% of the air temperature and rainfall stations respectively, were classified as useful. Whereas, the streamflow stations were classified 100% as useful. Overall, the change point detection analyses timings were found at monthly, seasonal, and annual time scales. In the rainfall time series, no annual change points were detected. In the air temperature time series except at Edagahamus station, all stations experienced an increasing change point while the streamflow time series experienced a decreasing change point except at Agulai and Genfel hydro stations. While alterations in streamflow time series without a noticeable change in rainfall time series recommend the change is caused by variables besides rainfall. Most probably the observed abrupt alterations in streamflow could result from alterations in catchment characteristics like the subbasin’s land use and cover. These research findings offered important details on the homogeneity and change point detection of the research area’s air temperature, rainfall, and streamflow necessary for the planers, decision-makers, hydrologists, and engineers for a better water allocation strategy, impact assessment and trend analyses.
The objective of this study is to examine the extent of awareness, intention, and behavior among university students in relation to green marketing. It is recognized that the present cohort of students, as well as future generations, will have a substantial impact on shaping the course of the world. The respondents for this study consisted of university students, and the collected data was subsequently analyzed using SPSS (Statistical Package for Social Sciences) 25 in order to test the stated hypothesis. University students exhibit a comprehensive understanding of green marketing and a conscious inclination toward embracing favorable intentions and behaviors in relation to this domain. The results of this study suggest that there exists a statistically significant and positive correlation between individuals’ level of green awareness and their intention to participate in environmentally friendly consumer practices. Furthermore, it has been observed that the intention of consumers to engage in green practices has a noteworthy influence on their subsequent behavior in terms of adopting environmentally friendly behaviors. The findings obtained from studies on green marketing are of utmost importance in offering valuable guidance and orientation toward a future characterized by heightened environmental awareness and sustainability. The novelty of this study is to provide a lucid comprehension of students’ perceptions about green marketing. Several factors can potentially impact the intention and behavior of environmentally conscious consumers, including personal values, social norms, and economic factors. Additional research is necessary in order to obtain a more thorough comprehension of the complexity of these variables, and how they interact to impact consumer behavior.
All ophiolite associations mark epochs of active tectonic movements, which lead to significant petrological processes and modification of the relief of the Earth's crust. Here we present a geological-petrographical characterization of one ophiolitic associations composed of: a) serpentinites; b) amphibolites-metamorphosed volcanic rocks and tuffs; c) metagabbros and metagabbrodiabases, placed among the Proterozoic metamorphic complex in the Rhodope Massif of Bulgaria on the Balkan Peninsula, South-Eastern Europе. The goal is to clarify the paleogeographical and geological setting during its creation. The methods of lithostratigraphic profiling and correlations on the database of geological field mapping were used, supplemented by microscopic, geochemical and isotopic studies of numerous rock samples. The summarized results confirm a certain stratigraphic level of the Ophiolite Association among the metamorphic complex and a complicated and protracted heterogenetic development, which is typical for the ophiolite associations created in eras of closing oceans, opposite movement of tectonic plates, subduction-obduction environment with appearance of autochthonous Neoproterozoic magmatism. Obducted fragments of serpentinites mark an old erosional continental surface, subsequently covered by transgressively deposited pelitic-carbonate sediments. The general conclusion of our study confirms the concept that the metamorphic complex of the Rhodope Massif represents a unified stratigraphic system consisting of two petrographic groups of different ages, with which we oppose the idea of a trust construction, launched by a group of geologists.
Problem: in recent years, new studies have been published on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields as used in magnetic resonance imaging (MRI). Many of these studies have not yet been incorporated into current safety recommendations. Method: scientific publications from 2010 onwards on the biological effects of static and electromagnetic fields of MRI were searched and evaluated. Results: new studies confirm older work that has already described effects of static magnetic fields on sensory organs and the central nervous system accompanied by sensory perception. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular organ. Recent studies on thermal effects of radiofrequency fields focused on the development of anatomically realistic body models and more accurate simulation of exposure scenarios. Recommendation for practice: strong static magnetic fields can cause unpleasant perceptions, especially dizziness. In addition, they can impair the performance of the medical personnel and thus potentially endanger patient safety. As a precaution, medical personnel should move slowly in the field gradient. High-frequency electromagnetic fields cause tissues and organs to heat up in patients. This must be taken into account in particular for patients with impaired thermoregulation as well as for pregnant women and newborns; exposure in these cases must be kept as low as possible.
The holding of soccer events has an important impact on modern urban activities, which is conducive to the economic development, social harmony, cultural integration and regional integration of cities. However, massive energy is consumed during the event preparation and infrastructure construction, resulting in an increase in the city’s carbon emissions. For the sustainable development of cities, it is important to explore the theoretical mechanism and practical effectiveness of the relationship between soccer events and urban carbon emissions, and to adopt appropriate policy management measures to control carbon emissions of soccer events. With the development of green technology, digitalization, and public transportation, the preparation and management methods of soccer events are diversified, and the possibility of carbon reduction of the event is further increased. This paper selects 17 cities in China from 2011 to 2019 and explores the complex impact of soccer events on urban carbon emissions by using green technology innovation, digitalization level and public transportation as threshold variables. The results show that: (1) Hosting soccer events increases carbon emissions with an impact coefficient of 0.021; (2) There is a negative single-threshold effect of green innovation technology, digitalization level and public transportation on the impact of soccer events on carbon emissions, with the impact coefficients of soccer events decreasing by 0.008, 0.01 and 0.06, respectively, when the threshold variable crosses the threshold. These findings will enhance the attention of city managers to the management of carbon emissions from soccer events and provide guidance for reducing carbon emissions from soccer events through green technology innovation, digital means and optimization of public transportation.
Copyright © by EnPress Publisher. All rights reserved.