The problem of stunting is not only related to children’s short height, but also has an impact on high morbidity rates, due to long-term nutritional deficiencies. which hinders motor and mental development in children. The objectives of this research are: 1) to understand household food security, 2) to understand the eating habits of pregnant women and toddlers regarding existing belief systems and traditions, and 3) to understand resilience mechanisms in overcoming food emergencies to prevent stunting. The data collection process uses a mixed methods approach by combining qualitative and quantitative research. The research results show that the determining factor for the incidence of stunting in coastal areas of Indonesia is the lack of household food availability due to subsistence economic life which then has an impact on eating behavior in the household, namely the lack of quality and quantity of the types of food consumed. daily. Apart from that, there is still a lack of understanding by pregnant women regarding the importance of providing complementary breast milk food to toddlers, low literacy of food diversity among toddlers, and low public trust in the importance of immunization. Furthermore, the high rate of early marriage in society and the limited awareness of using clean water is caused by a philosophy that still considers rivers as a source of life, so the water is used for consumption. Apart from that, socio-cultural mechanisms as a strategy to resolve the problem of food shortages have not yet been implemented.
This study examines how Artificial Intelligence (AI) enhances Sharia compliance within Islamic Financial Institutions (IFIs) by improving operational efficiency, ensuring transparency, and addressing ethical and technical challenges. A quantitative survey across five Saudi regions resulted in 450 validated responses, analyzed using descriptive statistics, ANOVA, and regression models. The findings reveal that while AI significantly enhances transparency and compliance processes, its impact on operational efficiency is limited. Key barriers include high implementation costs, insufficient structured Sharia datasets, and integration complexities. Regional and professional differences further underscore the need for tailored adoption strategies. It introduces a novel framework integrating ethical governance, Sharia compliance, and operational scalability, addressing critical gaps in the literature. It offers actionable recommendations for AI adoption in Islamic finance and contributes to the global discourse on ethical AI practices. However, the Saudi-specific focus highlights regional dynamics that may limit broader applicability. Future research could extend these findings through cross-regional comparisons to validate and refine the proposed framework. By fostering transparency and ethical governance, AI integration aligns Islamic finance with socio-economic goals, enhancing stakeholder trust and financial inclusivity. The study emphasizes the need for targeted AI training, the development of structured Sharia datasets, and scalable solutions to overcome adoption challenges.
This contribution questions young people’s access to digital networks at the scale of intermediate cities in Saint-Louis. Thus, it analyzes the prescriptions of digital actors responsible for the development of digital economy in relation with the orientations of the Senegal Digital 2025 strategy. This is a pretex to highlight the gaps between official political discourses and the level of deployment of digital infrastructures. The study highlights the need to repoliticize the needs of populations for broadband and very high-speed connections to promote local initiatives for youth participation in Saint-Louis. Indeed, datas relating to access and use of the Internet by young people reveal inequalities linked to household income, the disparity of infrastructure and digital equipment, and the discontinuity in neighborhood development, but also to the adaptability of the internet service marketed. Through urban and explanatory sociology mobilized through the approach of young people’s real access to the Internet, our analyzes have shown at the scale of urban neighborhoods the impact of the actions recommended by those involved in the development of populations’ access to Internet. The result is that the majority of young people are forced to access the Internet through medium-speed mobile networks.
Based on digital technology, the digital economy has typical characteristics of high efficiency, greenness, intelligence, innovation, strong penetration and so on, which can promote the sporting goods manufacturing industry (SGMI) to realize the goal of green development. This study selects panel data from 30 provinces in China over the period of 2011 to 2022. And the green total factor productivity of the sporting goods manufacturing industry (SGTFP) is used to reflect the green development of SGMI. The level of digital economy development (DIG) and the SGTFP are measured by using the entropy method and the Super-SBM model with undesirable outputs. Based on the method of coupling coordination degree model, the coordinated development degree of DIG and SGTFP is analyzed first. Then, by making use of the fixed effect model, intermediary effect model and spatial Durbin model, the influence of DIG on the green development of SGMI and its mechanism are empirically studied. The results show that DIG, SGTFP and the degree of their coupling and coordination are generally on the rise. The benchmark regression results show that the coefficient of DIG on SGTFP is 0.213; that is, the digital economy can significantly promote the improvement of green development in SGMI. According to the analysis of the spatial Durbin model, the impact of the digital economy on SGTFP has a certain spatial spillover, that is, the development of digital economy in the region will have a certain promoting effect on the green development of SGMI in the surrounding region. The intermediary effect model analyzes the influence mechanism and finds that the digital economy mainly boosts SGTFP through green innovation technology and energy consumption structure.
Global trade is based on coordinated factors, that means labor and products are moved from their point of origin to the point of use. Strategies have a significant impact on global trade because they enable the effective development of goods across international borders. The decision making is an important task for the development of Logistics Supply Chain (LSC) infrastructure and process. Decisions on supplier selection, production schedule, transportation routes, inventory levels, pricing strategies, and other issues need to be made. These decisions may have a big influence on customer service, profitability, operational efficiency, and overall competitiveness. The Artificial Intelligence (AI) approach of Fuzzy Preference Ranking Organization Method for Enrichment Evaluation (Fuzzy-Promethee-2) is used to assess the priority selection of the factors associated with the LSC and evaluate the importance in global trade. The role of AI is very useful compare to statistical analysis in terms of decision making. The computational analysis placed promotion of exports as the most important priority out of five selected attributes in LSC, with infrastructure development. The result suggests that LSC depends heavily on export promotion as the most significant attribute. Infrastructural development also appeared another factor influencing LSC. The foreign investment was ranked the lowest. The evaluated results are useful for the policy makers, supply chain managers and the logistics professionals associated with the supply chain management.
Introduction: Chatbots are increasingly utilized in education, offering real-time, personalized communication. While research has explored technical aspects of chatbots, user experience remains under-investigated. This study examines a model for evaluating user experience and satisfaction with chatbots in higher education. Methodology: A four-factor model (information quality, system quality, chatbot experience, user satisfaction) was proposed based on prior research. An alternative two-factor model emerged through exploratory factor analysis, focusing on “Chatbot Response Quality” and “User Experience and Satisfaction with the Chatbot.” Surveys were distributed to students and faculty at a university in Ecuador to collect data. Confirmatory factor analysis validated both models. Results: The two-factor model explained a significantly greater proportion of the data’s variance (55.2%) compared to the four-factor model (46.4%). Conclusion: This study suggests that a simpler model focusing on chatbot response quality and user experience is more effective for evaluating chatbots in education. Future research can explore methods to optimize these factors and improve the learning experience for students.
Copyright © by EnPress Publisher. All rights reserved.