In older adults with disabilities, muscle weakness reduces mobility and causes postural issues. Electrical muscle stimulation (EMS) training is effective for increasing strength by inducing involuntary skeletal muscle contractions. Thus, this study aimed to examine changes in lumbar movement, muscle activity during walking, and maximum muscle strength of lower-limb joints based on an 8-week EMS exercise program for older adults with physical disabilities. Sixteen older adults (aged 56–78 years) with physical disabilities were selected and randomly assigned to either the exercise group (EG, n = 8) or the control group (CG, n = 8). EG participants were instructed to wear EMS suits and participate in an elastic band and bare-body exercise program, whereas CG participants performed the exercise program without the EMS suits. Lumbar range of motion (ROM), body circumference, partial volume, maximum muscle strength, and muscle activity were measured. Statistical analysis was performed using SPSS 28.0 for Windows, with the critical value of α = 0.05. Compared to CG participants, EG participants had a superior ROM, body volume, partial volume, maximum muscle strength (knee joints), and muscle activity while walking. These positive outcomes highlight the efficacy of combining EMS with an exercise program for strength and rehabilitation training in older adults with physical disabilities.
In order to replace conventional materials in the existing composite world, there has been a focus on adopting coir fibres, which are lightweight, adaptable, efficient, and have great mechanical qualities. This study describes the creation of environmentally responsible bio-composites with good mechanical characteristics that employ coir powder as a reinforcement, which has good interfacial integrity with an epoxy matrix. And these epoxy-coir composites supplemented with coir particles are predicted to function as a reliable substitute for traditional materials used in industrial applications. Here, untreated and alkali-treated coir fibres powder were employed as reinforcement, with epoxy resin serving as a matrix. An experimental investigation has been carried out to study the effect of coir powder reinforcement at different weight percentages (5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, and 30 wt%). The morphological study, followed by a scanning electron microscope (SEM) and an optical microscope (OM), demonstrated that the powder and matrix had the strongest adhesion at 20 wt% coir powder-reinforced composite, with no voids, bubbles, or cracks. Based on the entire investigation, the polymer composite with 20 wt% reinforcement exhibited better mechanical qualities than the other combinations.
Despite Cameroon’s immense sand reserves, several enterprises continue to import standardized sands to investigate the properties of concretes and mortars and to guarantee the durability of built structures. The present work not only falls within the scope of import substitution but also aims to characterize and improve the properties of local sand (Sanaga) and compare them with those of imported standardized sand widely used in laboratories. Sanaga sand was treated with HCl and then characterized in the laboratory. The constituent minerals of Sanaga sand are quartz, albite, biotite, and kaolinite. The silica content (SiO2) of this untreated sand is 93.48 wt.%. After treatment, it rose 97.5 wt.% for 0.5 M and 97.3 wt.% for 1 M HCl concentration. The sand is clean (ES, 97.67%–98.87%), with fineness moduli of 2.45, 2.48, and 2.63 for untreated sand and sand treated with HCl concentrations of 0.5 and 1 M respectively. The mechanical strengths (39.59–42.4 MPa) obtained on mortars made with untreated Sanaga sand are unsatisfactory compared with those obtained on mortars made with standardized sand and with the expected strengths. The HCl treatment used in this study significantly improved these strengths (41.12–52.36 MPa), resulting in strength deficiencies of less than 10% after 28 curing days compared with expected values. Thus, the treatment of Sanaga sand with a 0.5 M HCl concentration offers better results for use as standardized sand.
Fruits are a source of vitamins. Mango is one of the abundantly nutritional fruits. Vitamin B9, or folic acid, is one of the important vital amines due to its role in preventing neural deficiency. Several beneficial micro-organisms are used for the synthesis of folic acid. In this study, Lactobacillus acidophilus, Leuconostoc mesenteroides, Streptococcus thermophilus, and Saccharomyces cerevisiae were used. Saccharomyces cerevisiae synthesized folic acid as compared to other organisms. There were five different concentrations of mango pulp that were analyzed for folic acid synthesis (5%, 10%, 15%, 20%, and 30%). The initial concentration of pulp was 133.37 mg kg−1, but after fermentation with four micro-organisms it got reduced. As compared to the other three organisms, Saccharomyces cerevisiae synthesizes 17.15 mg kg−1, 30.14 mg kg−1, 28.62 mg kg−1, 21.70 mg kg−1, and 21.78 mg kg−1, respectively, at different pulp concentrations of 5%, 10%, 15, 20%, and 30%. Vitamin C increased to 320 mg as compared to the control, and there was no significant difference between the four micro-organisms. Antioxidants also showed positive results at different concentrations of pulp. There was an increase in titratable acidity and a decrease in pH recorded for the 24 h fermentation period. In this variety, the color of mango pulp slightly changes to yellow shades due to the breakdown of pigments, so this effects the *b value in between the pulp concentrations. Data supports the enrichment of folic acid, which will further support the utilization of beneficial micro-organisms in food beverages.
Globalization and economic integration have an impact on increasing trade volume and economic growth in various countries, especially those that are open in their economies. This situation also provides ease of capital mobility between countries, which makes investment not only rely on domestic investment but also on foreign direct investment. Exchange rates and inflation also affect export growth, imports, and economic growth. The purpose of this study is to determine the effect of exchange rate, inflation, foreign direct investment, government expenditure, and economic openness on export and import growth. This study used time series data during the period 1980–2021, sourced from UNCTAD, ASYB, and Indonesian Central Bank (BI). The analysis model used is multiple linear regression with the help of EViews software, which first tests classical assumptions so that the regression results are Best Linier Unbiased Estimator (BLUE). The results show that foreign direct investment and government spending can significantly increase the rate of exports and imports. Meanwhile, the depreciating rupiah against the US dollar cannot encourage an increase in both exports and imports. Furthermore, foreign direct investment, government spending, and economic openness can significantly increase economic growth. The other variables, net exports and inflation, have no effect on Indonesia’s economic growth rate.
Copyright © by EnPress Publisher. All rights reserved.