The significant climate change the planet has faced in recent decades has prompted global leaders, policymakers, business leaders, environmentalists, academics, and scientists from around the world to unite their efforts since 1987 around sustainable development. This development not only promotes economic sustainability but also environmental, social, and corporate sustainability, where clean production, responsible consumption, and sustainable infrastructures prevail. In this context, the present article aims to propose a development framework for sustainability in food sector SMEs, which includes Life Cycle Assessment (LCA) and the integration of Environmental, Social, and Governance (ESG) strategies as key elements to reduce CO2 emissions and improve operational efficiency. The methodology includes a comparative analysis of strategies implemented between 2019 and 2023, supported by quantitative data showing a 20% reduction in operating costs, a 10% increase in market share, and a 25% increase in productivity for companies that adopted clean technologies. This study offers a significant contribution to the field of corporate sustainability, providing a model that is adaptable and applicable across different regions, enhancing innovation and business resilience in a global context that requires collective efforts to achieve the sustainable development goals.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
Urbanization process affects global socio-economic development. Originally tied to modernization and industrialization, current urbanization policy is focused on productivity, economic activities, and environmental sustainability. This study examines impact of urbanization in various regions of Kazakhstan, focusing on environmental, social, labor, industrial, and economic indicators. The study aims to assess how different indicators influence urbanization trends in Kazakhstan, particularly regarding environmental emissions and pollution. It delves into regional development patterns and identifies key contributing factors. The research methodology is based on classical economic theories of urbanization and modern interpretations emphasizing sustainability and socio-economic impacts and includes two stages. Shannon entropy measures diversity and uncertainty in urbanization indicators, while cluster analysis identifies regional patterns. Data from 2010 to 2022 for 17 regions forms the basis of analysis. Regions are categorized into groups based on urbanization levels leaders, challenged, stable, and outliers. This classification reveals disparities in urban development and its impacts. Findings stress the importance of integrating environmental and social considerations into urban planning and policies. Targeted interventions based on regional characteristics and urbanization levels are recommended to enhance sustainability and socio-economic outcomes. Tailored urban policies accommodating specific regional needs are crucial. Effective management and policy-making demand a nuanced understanding of these impacts, emphasizing region-specific strategies over a uniform approach.
This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
This article examines how financial technology determines bank performance in different EU countries. The answer to that question would allow banks to choose their development policy. The paper focuses on the main and most popular bank services that are linked to financial technology. A SWOT analysis of FinTech is also presented to show the benefits and drawbacks of FinTech. FinTech-based services are very diverse and are provided by financial firms and banks alike. This paper looks at the financial technology provided by banks: internet usage (internet banking), number of ATMs, credit transfers in a country, percentage of the population in a country holding a debit or credit card and whether that population has received or made a digital payment. Using the multi-criteria assessment methods of CRITIC and EDAS, the authors analysed and compared the countries of the European Union and the financial technology used in them. As a result of the application of these methods, the EU countries under consideration were ranked in terms of the use of financial technology. Subsequently, three banks from different countries with different levels of the use of financial technology were selected for the study. For these banks, financial ratios of profitability were calculated to characterise their performance. Correlation and pairwise regression analyses between the banks’ profitability ratios and financial technology were used to assess the relationship and influence between these ratios. The main conclusion of the study focuses on the extent to which financial technology influences the performance of banks in the selected countries. It is likely that further research will try to take into account the size of the country’s population when analysing all financial technologies. Researchers also needed to find out what influence financial technologies have on the such financial indicators as operational efficiency (costs), financial stability, and capital adequacy.
Sustainability in road construction projects is hindered by the extensive use of non-renewable materials, high greenhouse gas emissions, risk cost, and significant disruption to the local community. Sustainability involves economic, environmental, and social aspects (triple bottom line). However, establishing metrics to evaluate economic, environmental, and social impacts is challenging because of the different nature of these dimensions and the shortage of accepted indicators. This paper developed a comprehensive method considering all three dimensions of sustainable development: economic, environmental, and social burdens. Initially, the economic, environmental, and social impact category indicators were assessed using the Life cycle approach. After that, the Analytic Hierarchy Process (AHP) method and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) were utilized to prioritize the alternatives according to the acquired weightings and sustainable indicators. The steps of the AHP method involve forming a hierarchy, determining priorities, calculating weighting factors, examining the consistency of these assessments, and then determining global priorities/weightings. The TOPSIS method is conducted by building a normalized decision matrix, constructing the weighted normalized decision matrix, evaluating the positive and negative solutions, determining the separation measures, and calculating the relative closeness to the ideal solution. The selected alternative performs the highest Relative Closeness to the Ideal Solution. Lastly, a case study was undertaken to validate the proposed method. In three alternatives in the case study (Cement Concrete, Dense-Graded Polymer Asphalt Concrete, and Dense-Graded Asphalt Concrete), option 3 showed the most sustainable performance due to its highest Relative Closeness to the Ideal Solution. Integrating AHP and TOPSIS methods combines both strengths, including AHP’s structured approach for determining criteria weights through pairwise comparisons and TOPSIS’s ability to rank choices based on their proximity to an ideal solution.
Copyright © by EnPress Publisher. All rights reserved.