This financial modelling case study describes the development of the 3-statement financial model for a large-scale transportation infrastructure business dealing with truck (and some rail) modalities. The financial modelling challenges in this area, especially for large-scale transport infrastructure operators, lie in automatically linking the operating activity volumes with the investment volumes. The aim of the paper is to address these challenges: The proposed model has an innovative retirement/reinvestment schedule that automates the estimation of the investment needs for the Business based on the designated age-cohort matrix analysis and controlling for the maximum service ceiling for trucks as well as the possibility of truck retirements due to the reduced scope of tracking operations in the future. The investment schedule thus automated has a few calibrating parameters that help match it to the current stock of trucks/rolling stock in the fleet, making it to be a flexible tool in financial modelling for diverse transport infrastructure enterprises employing truck, bus and/or rail fleets for the carriage of bulk cargo quantifiable by weight (or fare-paying passengers) on a network of set, but modifiable, routes.
Measuring the performance of healthcare organizations has become a crucial yet challenging task, which is the focus of this study. The paper’s primary goal is to identify the key factors that shape healthcare organizations’ performance management systems in Serbia, which can serve as useful guidelines for implementing sustainable solutions. Additionally, the aim is to emphasize the importance of a broad implementation of performance measurement systems to facilitate strategy implementation and enhance organizational effectiveness. The empirical research involved an online survey of 280 respondents, including managers, executives, and operational staff from both private and public healthcare organizations in Serbia. Statistical analysis was conducted using SPSS 20. The study identifies key challenges, including the lack of a developed performance measurement system, weak support from information and management systems for performance improvement, and an organizational structure that does not support performance enhancement. Furthermore, it has been found that a deeper understanding of the essence of measurement significantly contributes to identifying problems in its application in the healthcare sector. It was also observed that the more challenges identified in the measurement process, the less favourable the perception of the flexibility and adaptability of the system.
This research explores the interactions within supply chains in the manufacturing sector, with a special emphasis on the distinctive obstacles encountered by the mosquito coil industry. The study is motivated by the need to comprehensively understand and address the multifaceted challenges encountered by manufacturers in their supply chain processes. The mosquito coil industry holds significant importance in Malaysia, primarily due to the country’s tropical climate, which is conducive to mosquito proliferation and the transmission of mosquito-borne diseases. Nowadays, there are growing complexities and disruptions experienced by the mosquito coil sector’s supply chain, prompting an in-depth investigation. The main objective is to identify the challenges and resilience strategies employed by manufacturers in this sector, providing an understanding that contributes to the broader discourse on supply chain dynamics. Employing a qualitative case study methodology, this research engages in extensive data collection through interviews, document analysis, and direct observations within the selected mosquito coil manufacturing entity. This methodology allows for an immersive exploration of the challenges faced, revealing insights into the factors influencing the supply chain dynamics. The study reveals a wide array of challenges, from obtaining raw materials to managing distribution logistics, underscoring the unique complexities specific to the sector. As a result, the research identifies and analyzes resilience strategies implemented by the mosquito coil manufacturer to mitigate challenges, such as procurement challenges faced in financial related issues, logistical complexities occurred from recent years’ worldwide pandemic, production disruptions from company’s human resource-related issues, global factors from the company’s competitors and market challenges, and technology integration from rapid technological advancements. Thus, implications of this study extend beyond the mosquito coil sector, contributing valuable knowledge to the academic community, practitioners, and policymakers involved in supply chain management. The research not only addresses the identified challenges but also serves as a foundation for enhancing the overall understanding of manufacturing supply chain dynamics, thereby fostering informed decision-making for improved industry resilience.
This study aims to identify the risk factors causing the delay in the completion schedule and to determine an optimization strategy for more accurate completion schedule prediction. A validated questionnaire has been used to calculate a risk rating using the analytical hierarchy process (AHP) method, and a Monte Carlo simulation on @RISK 8.2 software was employed to obtain a more accurate prediction of project completion schedules. The study revealed that the dominant risk factors causing project delays are coordination with stakeholders and changes in the scope of work/design review. In addition, the project completion date was determined with a confidence level of 95%. All data used in this study were obtained directly from the case study of the Double-Double Track Development Project (Package A). The key result of this study is the optimization of a risk-based schedule forecast with a 95% confidence level, applicable directly to the scheduling of the Double-Double Track Development Project (Package A). This paper demonstrates the application of Monte Carlo Simulation using @RISK 8.2 software as a project management tool for predicting risk-based-project completion schedules.
Introduction: Chatbots are increasingly utilized in education, offering real-time, personalized communication. While research has explored technical aspects of chatbots, user experience remains under-investigated. This study examines a model for evaluating user experience and satisfaction with chatbots in higher education. Methodology: A four-factor model (information quality, system quality, chatbot experience, user satisfaction) was proposed based on prior research. An alternative two-factor model emerged through exploratory factor analysis, focusing on “Chatbot Response Quality” and “User Experience and Satisfaction with the Chatbot.” Surveys were distributed to students and faculty at a university in Ecuador to collect data. Confirmatory factor analysis validated both models. Results: The two-factor model explained a significantly greater proportion of the data’s variance (55.2%) compared to the four-factor model (46.4%). Conclusion: This study suggests that a simpler model focusing on chatbot response quality and user experience is more effective for evaluating chatbots in education. Future research can explore methods to optimize these factors and improve the learning experience for students.
This study developed a specific scale to measure the impact of extrinsic motivations on students’ decisions to pursue online graduate programs at business schools in Latin America. Using a mixed-methods approach, the research proceeded in three stages. In the first stage, the construct was defined by identifying key extrinsic factors motivating students to enroll in online graduate programs, followed by the creation and initial validation of the scale in Colombia. The second stage involved testing the scale in Chile to determine its cross-cultural applicability. In the third stage, the scale’s predictive validity was confirmed, demonstrating its effectiveness in explaining how extrinsic motivations influence students’ intentions to enroll in online graduate programs. The findings indicate that the scale, composed of five dimensions—Cost Reduction, Ability to Study from Any Location, Control Over Learning Pace, Flexibility to Balance Study and Work, and Avoiding Commuting Time—is a reliable predictor of student preferences and intentions in online graduate education. The final scale includes 25 items across these dimensions, measuring extrinsic factors through items related to flexibility, time savings, and global accessibility. Validation in two Latin American countries confirms the scale’s relevance across diverse cultural contexts, enhancing its applicability within the region. This study provides empirical evidence that extrinsic motivation is a key determinant of students’ intentions to enroll in online programs in developing countries. It confirms that extrinsic motivations reflect a preference for flexible learning options compatible with students’ lifestyles and professional needs, linked to their beliefs about time management, professional advancement, and career opportunities associated with earning a graduate degree.
Copyright © by EnPress Publisher. All rights reserved.