Among the dental composites, Urethane Dimethacrylate (UDMA) is commonly used as a component in treating oral complications. Many molecular dynamics approaches are used to understand the behaviour of the material at room temperature as well as at higher temperatures to get a better insight after comparison with experimental values at the atomic level. There are three critical physical properties associated with these components, like abrasive wear, viscosity, and moduli, which play an essential role in determining the treatment and can be computed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), the general-purpose quantum chemistry program package (ORCA), and the General Utility Lattice Program (GULP) molecular dynamics methods. A radial distribution function plot is generated using visual molecular dynamics (VMD) for UDMA and BisGMA. A comparison of these parameters with BisGMA, another component of dental composites, along with experimental results, is carried out in the present investigation. Further, since radiation also matters for settling the materials in dental treatment, we have computed absorption spectra from 200 nm to 800 nm using LAMMPS/ORCA.
Many questions of control theory are well studied for systems which satisfy to the relative degree definition. If this definition is fulfilled then there exists linear state-space transform reducing system to a very convenient canonical form where zero dynamics is a part of system’s equations. Algorithms of such reduction are well-known. However, there exist systems which don’t satisfy this definition. Such systems are the subject of investigation in the presented paper. To investigate their properties here we suggest to consider an analogue of the classical relative degree definition – the so-called column-wise relative degree. It turned out that this definition is satisfied in some cases when classical relative degree doesn’t exist. We introduce this notion here, investigate it properties and suggest algorithm for reducing systems to the column-wise relative degree compliant form if possible. It is possible to show that systems with column-wise relative degree also can be reduced to a convenient canonical form by a linear state-space transformation. Some problems arise from the fact that some systems which do not have relative degree can be reduced to a form with it using linear inputs or outputs transform. Here we show that this is an interesting mathematical problem, which can be solved with the help of properties of relative degree, formulated and proved in this paper.
Hybrid nanofluids have several potential applications in various industries, including electronics cooling, automotive cooling systems, aerospace engineering, and biomedical applications. The primary goal of the study is to provide more information about the characteristics of a steady and incompressible stream of a hybrid nanofluid flowing over a thin, inclined needle. This fluid consists of two types of nanoparticles: non-magnetic nanoparticles (aluminium oxide) and magnetic nanoparticles (ferrous oxide). The base fluid for this nanofluid is a mixture of water and ethylene glycol in a 50:50 ratio. The effects of inclined magnetic fields and joule heating on the hybrid nanofluid flow are considered. The Runge-Kutta fourth-order method is used to numerically solve the partial differential equations and governing equations, which are then converted into ordinary differential equations using similarity transformations. Natural convection refers to the fluid flow that arises due to buoyancy forces caused by temperature differences in a fluid. In the context of an inclined needle, the shape and orientation of the needle have significantly affected the flow patterns and heat transfer characteristics of the nanofluid. These analyses protest that raising the magnetic parameter results in an increase in the hybrid nanofluid thermal profile under slip circumstances. Utilizing the potential of hybrid nanofluids in a variety of technical applications, such as energy systems, biomedicine, and thermal management, requires an understanding of and ability to manipulate these effects.
The Guacimal River catchment has an area of 181 km2 and is located in the NW of Costa Rica, between the coordinates 84.745° W-10.016° N and 84.909° W-10.325° N. In this territory, as in most of the country, detailed geomorphological studies are scarce; therefore, the objective of this paper is to present the geomorphological mapping at a scale of 1:25,000 of the Guacimal River, which allows us to explain the dynamics of the agents involved in the modeling of the catchment. The work methodology consisted of three stages: pre-mapping, field activity and post-mapping, which resulted in a map in which ten relief forms are represented, ordered according to their morphogenesis in endogenous modeled and exogenous (fluvial, gravitational and littoral). This document will be the base line for land use planning, both continental and coastal, and for local risk management.
This paper is devoted to the determination of the dispersive component of the surface energy of two boron materials such as h-BN and BPO4 surfaces by using the inverse gas chromatography (IGC) at infinite dilution. The specific interactions and Lewis’s acid-base parameters of these materials were calculated on the light of the new thermal model concerning the dependency of the surface area of organic molecules on the temperature, and by using also the classical methods of the inverse gas chromatography as well as the different molecular models such as Van der Waals, Redlich-Kwong, Kiselev, geometric, Gray, spherical, cylindrical and Hamieh models. It was proved that h-BN surface exhibits higher dispersive surface energy than BPO4 material.
The specific properties of interaction of the two boron materials were determined. The results obtained by using the new thermal model taking into account the effect of the temperature on the surface area of molecules, proved that the classical IGC methods, gave inaccurate values of the specific parameters and Lewis’s acid base constants of the solid surfaces. The use of the thermal model allowed to conclude that h-BN surface has a Lewis basicity twice stronger than its acidity, whereas, BPO4 surface presents an amphoteric character.
This research paper explores the influence of first-order chemical reactions on the sustainable properties of electrically conducting magnetohydrodynamic (MHD) fluids in a vertical channel with the unique characteristics of Jeffrey fluid flow. The mathematical model of MHD flow with Jeffrey fluid and chemical reaction incorporates the impacts of viscous dissipation, Joule heating, and a non-Newtonian fluid model with viscoelastic properties in the flow regions. The governing equations of the flow field were solved using the finite difference method, and the impacts of flow parameters on the flow characteristics were discussed numerically using a graphical representation. It’s revealed that increasing the Jeffrey parameter results in a decline in the velocity field profiles. Also, species concentration field profiles decline with higher values of the destruction chemical reaction parameter. The findings of this study have significant implications for various engineering applications, including energy generation, aerospace engineering, and material processing. Additionally, the inclusion of Jeffrey’s fluid flow introduces a viscoelastic component, enhancing the complexity of the fluid dynamics.
Copyright © by EnPress Publisher. All rights reserved.