Magyari E, Keller B. Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. European Journal of Mechanics-B/Fluids 2000; 19(1): 109–122. doi: 10.1016/S0997-7546(00)00104-7
Ibrahim SM. Unsteady MHD convective heat and mass transfer past an infinite vertical plate embedded in a porous medium with radiation and chemical reaction under the influence of Dufour and Soret effects. Chemical and Process Engineering Research 2014; 19
Cortell R. Combined effect of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall. Meccanica 2012; 47(3): 769–781. doi: 10.1007/s11012-011-9488-z
Oke AS, Mutuku WN. Significance of Coriolis force on Eyring-Powell flow over a rotating non-uniform surface. Applications and Applied Mathematics: An International Journal 2021; 16(1): 36.
Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the ASME International Mechanical Engineering Congress & Exposition; 12–17 November 1995; San Francisco, USA.
Iqbal Z, Yashodha S, Hakeem AK, et al. Energy transport analysis in natural convective flow of water: Ethylene glycol (50:50)-based nanofluid around a spinning down-pointing vertical cone. Frontiers in Materials 2022; 9: 1037201. doi: 10.3389/fmats.103720
Sankar M, Park J, Do Y. Natural convection in a vertical annuli with discrete heat sources. Numerical Heat Transfer, Part A: Applications 2011; 59(8): 594–615. doi: 10.1080/10407782.2011.561110
Ganesh NV, Al-Mdallal QM, Reena K, Aman S. Blasius and Sakiadis slip flow of H2O–C2H6O2 (50:50) based nanoliquid with different geometry of boehmite alumina nanoparticles. Case Studies in Thermal Engineering 2019; 16: 100546. doi: 10.1016/j.csite.2019.100
Abu-Nada E, Masoud Z, Oztop HF, Campo A. Effect of nanofluid variable properties on natural convection in enclosures. International Journal of Thermal Sciences 2010; 49(3): 479–491. doi: 10.1016/j.ijthermalsci.2009.09.002
Reddy NK, Sankar M. Buoyant convective transport of nanofluids in a non-uniformly heated annulus. Journal of Physics: Conference Series 2020; 1597(1): 012055. doi: 10.1088/1742-6596/1597/1/012055
Sankar M, Kiran S, Ramesh GK, Makinde OD. Natural convection in a non-uniformly heated vertical annular cavity. Defect and Diffusion Forum 2017; 377: 189–199. doi: 10.4028/www.scientific.net/DDF.377.189
Shoaib M, Raja MA, Sabir MT, et al. Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet. Scientific Reports 2020; 10(1): 18533. doi: 10.1038/s41598-020-75254-8
Al-Hanaya AM, Sajid F, Abbas N, Nadeem S. Effect of SWCNT and MWCNT on the flow of micropolar hybrid nanofluid over a curved stretching surface with induced magnetic field. Scientific Reports 2020; 10(1): 8488. doi: 10.1038/s41598-020-65278-5
Sajja VS, Gadamsetty R, Muthu P, et al. Significance of Lorentz force and viscous dissipation on the dynamics of propylene glycol: Water subject to Joule heating conveying paraffin wax and sand nanoparticles over an object with a variable thickness. Arabi
Guedri K, Raizah Z, Eldin ET, et al. Thermal mechanism in magneto radiated 〖〖[(Al〗_2 O_3-Fe_3 O_4)/blood]〗_hnf over a 3D surface: Applications in biomedical engineering. Frontiers in Chemistry 2022; 10: 960349. doi: 10.3389/fchem.2022.960349
Al-Mdallal QM, Indumathi N, Ganga B, Hakeem AA. Marangoni radiative effects of hybrid-nanofluids flow past a permeable surface with inclined magnetic field. Case Studies in Thermal Engineering 2020; 17: 100571. doi: 10.1016/j.csite.2019.100571
Sankar M, Park Y, Lopez JM, Do Y. Double-diffusive convection from a discrete heat and solute source in a vertical porous annulus. Transport in Porous Media 2012; 91: 753–775. doi: 10.1007/s11242-011-9871-1
RamReddy C, Saran HL. Linear temporal stability analysis of dual solutions for a Ti-alloy nanofluid with inclined MHD and Joule effects: Flow separation. Journal of Nanofluids 2022; 11(5): 782–794. doi: 10.1166/jon.2022.1870
Ramzan M, Dawar A, Saeed A, et al. Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions. PLOS One 2021; 16(12): 0260854. doi: 10.1371/journal.pone.026
Swamy HAK, Sankar M, Reddy NK. Analysis of entropy generation and energy transport of Cu-water nanoliquid in a tilted vertical porous annulus. International Journal of Applied and Computational Mathematics 2022; 8: 10. doi: 10.1007/s40819-021-01207-y
Govindaraju M, Saranya S, Hakeem AA, et al. Analysis of slip MHD nanofluid flow on entropy generation in a stretching sheet. Procedia Engineering 2015; 127: 501–507. doi: 10.1016/j.proeng.2015.11.405
Khashi’ie NS, Arifin NM, Pop I. Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alexandria Engineering Journal 2022; 61(3): 1938–1945. doi: 10.1016/j.aej.2021.07.032
Ullah H, Fiza M, Khan K, et al. Effect of Joule heating and thermal radiation of MHD boundary layer Oldroyd-B nanofluid flow with heat transfer over a porous stretching sheet by finite element method. Journal of Nanomaterials 2022; 2022: 7373631. doi: 10.
Sejunti MI, Khaleque TS. Effects of velocity and thermal slip conditions with radiation on heat transfer flow of ferrofluids. Journal of Applied Mathematics and Physics 2019; 7(6): 1369–1387. doi: 10.4236/jamp.2019.76092
Sen SSS, Das M, Nayak MK, Makinde OD. Natural convection and heat transfer of micropolar hybrid nanofluid over horizontal, inclined and vertical thin needle with power-law varying boundary heating conditions. Physica Scripta 2023; 98(1): 015206. doi: 10.1
Hussain A, Akkurt N, Rehman A, et al. Transportation of thermal and velocity slip factors on three-dimensional dual phase nanomaterials liquid flow towards an exponentially stretchable surface. Scientific Reports 2022; 12: 18595. doi: 10.1038/s41598-022-2
Sulochana C, Ashwinkumar GP, Sandeep N. Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment. The European Physical Journal Plus 2017; 132: 387. doi: 10.1140/epjp/i2017-11633-3
Naseem T, Fatima U, Munir M, et al. Joule heating and viscous dissipation effects in hydromagnetized boundary layer flow with variable temperature. Case Studies in Thermal Engineering 2022; 35: 102083. doi: 10.1016/j.csite.2022.102083
Tarakaramu N, Sivakumar N, Satya Narayana PV, Sivajothi R. Viscous dissipation and Joule heating effects on 3D magnetohydrodynamics flow of Williamson nanofluid in a porous medium over a stretching surface with melting condition. ASME Open Journal of Engi