Cobalt-ion batteries are considered a promising battery chemistry for renewable energy storage. However, there are indeed challenges associated with co-ion batteries that demonstrate undesirable side reactions due to hydrogen gas production. This study demonstrates the use of a nanocomposite electrolyte that provides stable performance cycling and high Co2+ conductivity (approximately 24 mS cm−1). The desirable properties of the nanocomposite material can be attributed to its mechanical strength, which remains at nearly 68 MPa, and its ability to form bonds with H2O. These findings offer potential solutions to address the challenges of co-dendrite, contributing to the advancement of co-ion batteries as a promising battery chemistry. The exceptional cycling stability of the co-metal anode, even at ultra-high rates, is a significant achievement demonstrated in the study using the nanocomposite electrolyte. The co-metal anode has a 3500-cycle current density of 80 mA cm−2, which indicates excellent stability and durability. Moreover, the cumulative capacity of 15.6 Ah cm−2 at a current density of 40 mA cm−2 highlights the better energy storage capability. This performance is particularly noteworthy for energy storage applications where high capacity and long cycle life are crucial. The H2O bonding capacity of the component in the nanocomposite electrolyte plays a vital role in reducing surface passivation and hydrogen evolution reactions. By forming strong bonds with H2O molecules, the polyethyne helps prevent unwanted reactions that can deteriorate battery performance and efficiency. This mitigates issues typically associated with excess H2O and ion presence in aqueous Co-ion batteries. Furthermore, the high-rate performance with excellent stability and cycling stability performance (>500 cycles at 8 C) of full Co||MnO2 batteries fabricated with this electrolyte further validates its effectiveness in practical battery configurations. These results indicate the potential of the nanocomposite electrolyte as a valuable and sustainable option, simplifying the development of reliable and efficient energy storage systems and renewable energy applications.
Energy systems face serious difficulties due to economic policy uncertainty, which affects consumption trends and makes the shift to sustainability more difficult. While adjusting for economic growth and carbon emissions, this study examines the dynamic relationship between economic policy uncertainty and energy consumption (including renewable and nonrenewable) in China from 1985Q1 to 2023Q4. The research reveals the frequency-specific and time-varying relationships between these variables by employing sophisticated techniques such as Wavelet Cross-Quantile Correlation (WCQC) and Partial WCQC (PWCQC). Economic policy uncertainty and energy consumption do not significantly correlate in the short term; however, over the long term, economic policy uncertainty positively correlates with renewable energy consumption at medium-to-upper quantiles, indicating that it may play a role in encouraging investments in sustainable energy. On the other hand, EPU has a negative correlation with nonrenewable energy usage at lower quantiles, indicating a slow move away from fossil fuels. These results are confirmed by robustness testing with Spearman-based WCQC techniques. The study ends with policy recommendations to maximize economic policy uncertainty’s long-term impacts on renewable energy, reduce dependency on fossil fuels, and attain environmental and energy sustainability in China.
In green construction, sustainable resources are essential. One such material is copper, which is widely utilized in electronics, transportation, manufacturing, and residential buildings. As a very useful material, it has many beneficial impacts on human life. Observed from the recent demand spike is in line with the overall trend and the current growing smelter construction in Indonesia. Researchers intend to adapt the existing Copper Smelting Plant Building into an environmentally friendly building as a part of the production chain, in addition to reducing public and environmental concerns about the consequences of this development. We have identified a disparity in cost, where the high cost of green buildings is an obstacle to its implementation to enhance the cost performance with increased renewable energy of the Smelter Construction Building, this study investigates the application of LEED parameters to evaluate green retrofit approaches through system dynamics. The most relevant features of the participant assessments were identified using the SEM-PLS approach, which is used to build and test statistical models of causal models. We have results for this Green Retrofitting study following significant variables according to the following guidelines: innovation, low-emission materials, renewable energy, daylighting, reducing indoor water usage, rainwater management, and access to quality transit.
During property renovations, sustainability is increasingly playing a crucial role in reducing environmental impacts, utilizing resources efficiently, and improving the quality of living environments. In our research, we examined the environmentally conscious thinking of potential clients for sustainable renovations, including their requirements for materials, which encompass enhancing energy efficiency, the importance of waste reduction, the significance of using alternative energy, and the application of eco-friendly, durable, and local materials. According to the results of our quantitative survey, respondents recognized the importance of sustainability considerations and expressed their commitment towards energy-efficient and eco-friendly solutions, although costs and payback periods continued to be decisive factors. We found that advocates of sustainable property renovations in our sample displayed environmentally conscious characteristics, and environmentally conscious consumers are willing to spend more for significant and long-term results. As part of our research, we conducted in-depth interviews with real estate agents and general contractors to understand sustainability considerations in the decision-making process of property renovations. The key lesson from the interviews was that buyers can be segmented into different groups, with those prioritizing environmental awareness being of significant importance. Based on the findings, sustainability is increasingly coming to the forefront in property renovations. Thus, our publication offers a detailed insight into market trends and practices.
This study analyzes the studies on project finance (PF) and renewable energy (RE) arena, employing a comprehensive scientometric analysis to illuminate the current research landscape, identify prominent scholars, and uncover emerging trends. Encompassing several analyses, we have charted the evolution of this domain from 1993 to March 2024 and showed the way for further research. We analyzed 80 studies selected from several databases by means scientometric tools. Despite decent citation rates, research in this relatively young field is surprisingly scarce. While geographically diverse, research leadership stems from the UK, USA, Australia, and Germany. Interestingly, a significant portion of the studies originates from broad energy and sustainability areas, highlighting a potential knowledge gap in finance and economics areas. Additionally, the prevalence of case studies points to a strong connection between theory and practice. The research also revealed prominent topics like the interplay between PF and RE, various renewable resources, infrastructure development, financial considerations, risk management, among others. While many themes exist, areas like technological advancements, diverse cost approaches, valuation methodologies, and policy considerations remain underexplored. Other results unveiled an unexpected finding: limited evidence of large-scale collaborations, with individual or small-group research efforts currently dominating the field. However, existing collaborative networks promise future advancements through the emergence of more formalized research groups, which can perform future research endeavors with a wide spectrum of unexplored topics.
A method for studying the resilience of energy and socio-ecological systems is considered; it integrates approaches developed at the International Institute of Applied Systems Analysis and the Melentyev Institute of Energy Systems (MESI) of the Siberian Branch of the Russian Academy of Sciences. The article discusses in detail the methods of using intelligent information technologies, in particular semantic technologies and knowledge engineering (cognitive probabilistic modeling), which the authors propose to use in assessing the risks of natural and man-made threats to the resilience of the energy sector and social and ecological systems. More attention is paid to the study and adaptation of the integral indicator of quality of life, which makes it possible to combine these interdisciplinary studies.
Copyright © by EnPress Publisher. All rights reserved.