The initiation of tapering, sparked by heightened inflation in the United States, reverberates across global markets, with notable implications for Indonesia. This study delved into the nuanced impact of tapering on Sharia-compliant stocks in both Indonesia and Malaysia. The rationale behind selecting Sharia stocks for analysis lies in their composition, featuring companies boasting low debt-to-asset and equity ratios, thereby positing robust resilience in the face of the Federal Reserve’s implementation of tapering. Employing a time series dataset with a weekly sampling period spanning from January to September 2022, the analysis adopted the Error Correction Model (ECM) within a multiple regression framework to circumvent potential spurious regression pitfalls. The results of this study indicate that the impact of tapering off policy in Indonesia has a positive impact in the short term and long term, while in Malaysia it tends to be insignificant in the short term and has a positive impact from the US 10-year bond yield variable and a negative impact from US 1-Year Treasury Bills. This result is interesting because it differs from the general theory. The causal factors include the agility of the Indonesian central bank in maintaining the benchmark interest rate spread with the Fed, the economic stability of both countries, and the increasing trend of coal, with Indonesia being one of the largest producers of the commodity. Investors, in navigating these intricate dynamics, may find strategic insights derived from this research invaluable for shaping their investment decisions. while government policymakers may use them as a reference for shaping policies related to Sharia stock investments, including the incorporation of artificial intelligence.
This study explores the impact of technological innovations on audit transparency, objectivity, and assurance. The study employs a systematic literature review methodology, analyzing a wide range of scholarly articles, research papers, and reports to synthesize the findings. The methodology involved identifying keywords, conducting comprehensive searches in academic databases, and evaluating the selected literature. The study identifies key themes on how technological innovations impact audit practices through analysis of the literature. The impacts of technology include enhanced audit transparency through improved documentation capabilities, real-time reporting, and increased stakeholder engagement. Technological advancements bolster audit objectivity by automating repetitive tasks, facilitating advanced data analysis, and promoting standardized audit procedures. However, the analysis highlighted challenges associated with the use of technology in audits including complex technology implementation and the potential for biases. This research study contributes to the existing body of knowledge by consolidating relevant research and insights on the subject matter.
While the rapid development of artificial intelligence has affected people's daily lives, it has also brought huge challenges to high school mathematics teaching, such as restructuring the classroom teaching structure, transforming the role of teachers, and selecting classroom teaching methods. Based on this, the article explores the application strategies of AI technology in improving knowledge introduction, improving mathematics classroom efficiency and stimulating students' learning interest, with a view to optimizing classroom teaching links, improving students' core discipline quality, and promoting the development of high school mathematics teaching informatization.
In this paper, we will provide an extensive analysis of how Generative Artificial Intelligence (GenAI) could be applied when handling Supply Chain Management (SCM). The paper focuses on how GenAI is more relevant in industries, and for instance, SCM where it is employed in tasks such as predicting when machines are due for a check-up, man-robot collaboration, and responsiveness. The study aims to answer two main questions: (1) What prospects can be identified when the tools of GenAI are applied in SCM? Secondly, it aims to examine the following question: (2) what difficulties may be encountered when implementing GenAI in SCM? This paper assesses studies published in academic databases and applies a structured analytical framework to explore GenAI technology in SCM. It looks at how GenAI is deployed within SCM and the challenges that have been encountered, in addition to the ethics. Moreover, this paper also discusses the problems that AI can pose once used in SCM, for instance, the quality of data used, and the ethical concerns that come with, the use of AI in SCM. A grasp of the specifics of how GenAI operates as well as how to implement it successfully in the supply chain is essential in assessing the performance of this relatively new technology as well as prognosticating the future of generation AI in supply chain planning.
Under the background of the development of the network information age, the current Internet industry has obtained more development opportunities, but it has also brought corresponding challenges in the process of wide application. In the development and construction of modernization, society pays more attention to the supervision and determination of the characteristics of online public opinion. From the perspective of the current characteristics of network public opinion, because social information is more extensive and involves many fields, network public opinion has a high degree of complexity and diffusion. Therefore, it is necessary to strengthen the analysis and application of relevant data mining systems in order to achieve efficient management of network public opinion. The key to the disadvantage of the traditional excavation of public opinion communication characteristics lies in the lag of the excavation process, and it is difficult to deal with malignant public opinion in a timely and effective manner. Therefore, in order to truly solve the lagging problem of public opinion data dissemination feature mining technology, it is necessary to strengthen the application of artificial intelligence technology in it.
Copyright © by EnPress Publisher. All rights reserved.