We present an innovative enthalpy method for determining the thermal properties of phase change materials (PCM). The enthalpy-temperature relation in the “mushy” zone is modelled by means of a fifth order Obreshkov polynomial with continuous first and second order derivatives at the zone boundaries. The partial differential equation (PDE) for the conduction of heat is rewritten so that the enthalpy variable is not explicitly present, rendering the equation nonlinear. The thermal conductivity of the PCM is assumed to be temperature dependent and is modelled by a fifth order Obreshkov polynomial as well. The method has been applied to lauric acid, a standard prototype. The latent heat and the conductivity coefficient, being the model parameters, were retrieved by fitting the measurements obtained through a simple experimental procedure. Therefore, our proposal may be profitably used for the study of materials intended for heat-storage applications.
The sea level rise under global climate change and coastal floods caused by extreme sea levels due to the high tide levels and storm surges have huge impacts on coastal society, economy, and natural environment. It has drawn great attention from global scientific researchers. This study examines the definitions and elements of coastal flooding in the general and narrow senses, and mainly focuses on the components of coastal flooding in the narrow sense. Based on the natural disaster system theory, the review systematically summarizes the progress of coastal flood research in China, and then discusses existing problems in present studies and provide future research directions with regard to this issue. It is proposed that future studies need to strengthen research on adapting to climate change in coastal areas, including studies on the risk of multi- hazards and uncertainties of hazard impacts under climate change, risk assessment of key exposure (critical infrastructure) in coastal hotspots, and cost-benefit analysis of adaptation and mitigation measures in coastal areas. Efforts to improve the resilience of coastal areas under climate change should be given more attention. The research community also should establish the mechanism of data sharing among disciplines to meet the needs of future risk assessments, so that coastal issues can be more comprehensively, systematically, and dynamically studied.
The paper deals with the issues of the influence of forest cover on the average annual runoff of rivers in the Pripyat River basin. In the study area, under the influence of solar radiation, the temperature of the air and the soil surface increases, evaporation from the water surface also increases, and the moisture content of the upper layers of the soil decreases. In general, with an increase in forest cover, the annual layer of the runoff of the studied rivers increases, as well as with an increase in the amount of precipitation (in contrast to the runoff of short-term floods). However, with a forest cover of more than 20%–30% and a relatively small amount of precipitation, the runoff decreases, which is associated with the retention of part of the precipitation by the forest cover. With a large amount of precipitation and low forest cover, the runoff also decreases, which is probably due to the loss of precipitation water for evaporation, etc. The conducted studies show that, just as the forest affects water resources, the flow of moisture to watersheds also affects the state of forest systems. Moreover, this interaction is expressed by evaporation from forests. Under influence of change of a climate growth of evaporation is observed.
Every plant is significantly important in tackling climate change, including Makila (Litsea angulata BI) an endemic wood species found in the forest of Moluccas Provinces. Therefore, this research aimed to examine the role of the Makila plant in tackling climate change by measuring biomass content using constructing an allometric equation. The method used was a destructive sampling, where 40 units of Makila plant at the sampling level were felled, and sorted according to root, stem, branch, rating, and leaf segments. Each segment was weighed both at wet and after drying, followed by a classical assumption test in data processing, and the formulation of an allometric equation. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results yielded a multiple linear regression, namely: Y = −1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = −1,084,626 + 675,090X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R2 = 0.915. Considering the potential for time, cost, and energy savings, as well as ease of measurement in the field, the biomass of young Makila trees was simply predicted by measuring the tree diameter and avoiding the height. This method used the strong relationship between biomass, plant diameter, and height to facilitate the estimation of biomass content accurately by entering the results of field measurements.
For centuries, stem cuttings harvested from sexually mature trees have been recognized to be more difficult to root than those from juvenile shoots. This has been poorly understood and attributed to a combination of ontogenetic and physiological ageing. The recent suggestion that micro-RNA may play a key role in phase change has stimulated a re-examination of some old data that identified pre-severance light x nutrient interactions affecting the rooting ability of stem cuttings. This was linked to vigorous growth and active photosynthesis without constraint from accumulated starch. Support for the prime importance of physiological factors was also obtained when seeking to induce physiological youth in the crowns of ontogenetically mature trees by the induction of roots within the tree crown. Meanwhile, at the other end of the phase change spectrum, floral initiation occurred when the opposite set of environmental conditions prevailed so that growth was stunted, and carbohydrates accumulated in leaves and stems. A re-examination of this literature suggests that rooting ability is driven at the level of an individual leaf and internode emerging from the terminal bud affecting both morphological and physiological activity. In contrast, flowering occurs when internode elongation and assimilate mobilization were hindered. It is therefore suggested that the concepts of juvenility and ageing are not relevant to vegetative propagation and should instead be replaced by physiological and morphological ‘fitness’ to root.
Copyright © by EnPress Publisher. All rights reserved.