The possibility of preoperative prediction of pathologic complete response in rectal cancer has been studied in order to identify patients who would respond to neoadjuvant therapy and to individualize therapeutic strategies. Endoscopic ultrasound of the rectum is an accurate method for the evaluation of local tumor and lymph node invasion. Objective: To evaluate the potential of endoscopic ultrasound as a predictor of complete pathological response to neoadjuvant treatment in patients with locally advanced rectal cancer. Material and methods: Retrospective study of patients with rectal cancer from January 2014 to December 2016. Results: We obtained a statistical association between T stage by endoscopic ultrasound and complete pathological response (p = 0.015). It is not so for N, sphincter involvement, circumferential involvement and maximum tumor thickness (p = 0.723, p = 0.510, p = 0.233 and p = 0.114, respectively). When multivariate logistic regression analysis was applied to assess the degree of influence of the predictor variables on pathologic response, none of these variables was associated with complete pathologic response. Conclusion: Prediction of pathologic complete response in rectal cancer has been considered as the crucial point upon which treatments for rectal cancer could be individualized. So far, no imaging method has been able to demonstrate efficacy in predicting complete pathologic response, and in turn there is no direct association between any endosonographic finding that can accurately predict it.
Seawater desalination has been studied with interest due to the scarcity of fresh water for human consumption. Solar distillation is an old method; the productivity, energy consumption of the process and the cost of the desalinated water thus obtained depend on the efficiency achieved in each of the stages of these systems. The limited capacity to absorb solar radiation and transform it into useful heat for evaporation, interaction with the surrounding medium, and heat losses restrict the overall efficiency of the thermal process and productivity. Since the energy comes from solar radiation, the maximum productivity of this process will be constrained by the magnitude of the total solar radiation available in an area of the planet due to its geographic location, time of year and local climatic conditions. The processes of this energy will be thermodynamically limited by the heat transfer coefficients achieved in the equipment, the maximum value that the evaporation heat can reach, as long as the losses to the environment by convection and radiation are minimal. Comparative analyses of several proposed models, reported data of distillers, reported data of solar radiation that reach average values of up to 7.2–7.4 kwh/m2 in some regions of the planet are presented and estimates are made for productivity of these equipments that they reach between 6.7 and 6.9 kg/m2 day with a theoretical maximum efficiency of about 0.16 of the total solar radiation.
In this paper, the pollination and biology of apricot in Hongfeng and New Century were studied. The results are as follows: (1) The est pollination with the red variety is early, new century's best pollinating varieties is camel yellow. (2) The flowering period of different cultivars was different, and the flowering period of Hongfeng and other varieties was 3 - 7 days later than that of Baxing water apricot and other varieties, which provided germplasm for further breeding of late flowering varieties. (3) Hongfeng, the new century and other varieties of self-flowering rate of 0 - 3.61% range, is self-incompatible varieties. (4) The pollen germination rate of different cultivars was higher than 50%, which indicated that the pollen was mature and the fertility was strong, and the reason of low percentage of self-pollination was pollen abortion, the main reason was self and so on.
The H3N2 influenza virus is spiking dramatically, which is a major concern worldwide and in India. The multifunctional hetero-trimer influenza virus RNA-dependent RNA polymerase (RdRP) is involved in the generation of viral mRNA and is crucial for viral infectivity, which is directly related to the virus’s ability to survive. The goal of the current work was to use molecular docking to determine how the RdRP protein might be affected by powerful bioactive chemicals found in Calotropis gigantia latex. By applying CB-dock 2 analysis and 2D interactions, an in-silico docking study was conducted using a GC-FID (gas chromatography with flame-ionization detection) based composition profile. Tocospiro A (15%), Amyrin (7%), and Gombasterol A were found by GC-FID to be the main phytocompounds in the latex of Calotropis gigantia. The docking result showed that ligands were effectively bound to RdRP. According to interaction studies, RdRP/ligand complexes create hydrogen bonds, van der Waals forces, pi-alkyl bonds, alkyl bonds, and pi-Sigma bonds. Therefore, it was suggested that Calotropis gigantia latex may represent a possible herbal remedy to attenuate H3N2 infections based on the above findings of the fragrance profile and docking.
Carbon-based hollow structured nanomaterials have become one of the hot areas for research and development of hollow structured nanomaterials due to their unique structure, excellent physicochemical properties and promising applications. The design and synthesis of novel carbon-based hollow structured nanomaterials are of great scientific significance and wide application value. The recent research on the synthesis, structure and functionalization of carbon-based hollow structured nanomaterials and their related applications are reviewed. The basic synthetic strategies of carbon-based hollow structure nanomaterials are briefly introduced, and the structural design, material functionalization and main applications of carbon-based hollow structure nanomaterials are described in detail. Finally, the current challenges and opportunities in the synthesis and application of carbon-based hollow structured nanomaterials are discussed.
Copyright © by EnPress Publisher. All rights reserved.