Leung Y, To M, Lam T, et al. Epidemiology of human influenza A(H7N9) infection in Hong Kong. Journal of Microbiology, Immunology and Infection 2017; 50(2): 183–188. doi: 10.1016/j.jmii.2015.06.004
Ali G S, Ozdemir B, Selamoglu Z. A review of severe acute respiratory syndrome coronavirus 2 and pathological disorders in patients. Journal of Pharmaceutical Care 2021; 9(3): 141–147. doi: 10.18502/jpc.v9i3.7373
Seladi-Schulman J. H3N2 flu: What you should know. Available online: https://www.healthline.com/health/h3n2 (accessed on 8 November 2023).
Jin Z, Wang Y, Yu X F, et al. Structure-based virtual screening of influenza virus RNA polymerase inhibitors from natural compounds: Molecular dynamics simulation and MM-GBSA calculation. Computational Biology and Chemistry 2020; 85: 107241. doi: 10.1016/j.compbiolchem.2020.107241
Jester BJ, Uyeki TM, Jernigan DB. Fifty years of influenza A(H3N2) following the pandemic of 1968. American Journal of Public Health 2020; 110(5): 669–676. doi: 10.2105/AJPH.2019.305557
York A, Fodor E. Biogenesis, assembly, and export of viral messenger ribonucleoproteins in the influenza A virus infected cell. RNA Biology 2013; 10(8): 1274–1282. doi: 10.4161/rna.25356
Massari S, Goracci L, Desantis J, Tabarrini O. Polymerase acidic protein–basic protein 1 (PA–PB1) protein–protein interaction as a target for next-generation anti-influenza therapeutics. Journal of Medicinal Chemistry 2016; 59(17): 7699–7718. doi: 10.1021/acs.jmedchem.5b01474
Deyde VM, Xu X, Bright RA, et al. Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. The Journal of Infectious Diseases 2007; 196(2): 249–257. doi: 10.1086/518936
Hussain M, Galvin HD, Haw TY, et al. Drug resistance in influenza A virus: The epidemiology and management. Infection and Drug Resistance 2017; 10: 121–134. doi: 10.2147/IDR.S105473
Poole EL, Medcalf L, Elton D, Digard P. Evidence that the C-terminal PB2-binding region of the influenza A virus PB1 protein is a discrete α-helical domain. FEBS Letters 2007; 581(27): 5300–5306. doi: 10.1016/j.febslet.2007.10.025
Selamoglu Z. Polyphenolic compounds in human health with pharmacological properties. Journal of Traditional Medicine & Clinical Naturopathy 2017; 6(4): e137.
Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981−2002. Journal of Natural Products 2003; 66(7): 1022–1037. doi: 10.1021/np030096l
Fine DH, Furgang D, Barnett ML, et al. Effect of an essential oilcontaining antiseptic mouthrinse on plaque and salivary Streptococcus mutans levels. Journal of Clinical Periodontology 2000; 27(3): 157–161. doi: 10.1034/j.1600-051x.2000.027003157.x
Kareem SO, Akpan I, Ojo OP. Antimicrobial activities of Calotropis procera on selected pathogenic microorganisms. African Journal of Biomedical Research 2008; 11(1). doi: 10.4314/ajbr.v11i1.50674
Aliyu RM, Abubakar MB, Kasarawa AB, et al. Efficacy and phytochemical analysis of latex of Calotropis procera against selected dermatophytes. Journal of Intercultural Ethnopharmacology 2015; 4(4): 314–317. doi: 10.5455/jice.20151012012909
Wadhwani BD, Mali D, Vyas P, et al. A review on phytochemical constituents and pharmacological potential of Calotropis procera. RSC Advances 2021; 11: 35854–35878. doi: 10.1039/D1RA06703F
Iqbal J, Mishra RP, Allie AH. Antidermatophytic activity of angiospermic plants: A review. Asian Journal of Pharmaceutical and Clinical Research 2015; 8(2): 75–80.
Dirir AM, Cheruth AJ, Ksiksi TS. Ethnomedicine, phytochemistry and pharmacology of Calotropis procera and Tribulus terrestris. Journal of Natural Remedies 2017; 17(2): 38–47. doi: 10.18311/jnr/2017/11043
Sharma M, Tandon S, Nayak UA, et al. Calotropis gigantea extract as a potential anticariogenic agents against Streptococcus mutans: An in vivo comparative evaluation. Journal of Conservative Dentistry 2017; 20(3): 174–179. doi: 10.4103/JCD.JCD_13_16
Ishnava KB, Chauhan JB, Garg AA, Thakkar AM. Antibacterial and phytochemical studies on Calotropis gigantia (L.) R. Br. latex against selected cariogenic bacteria. Saudi Journal of Biological Sciences 2012; 19(1): 87–91. doi: 10.1016/j.sjbs.2011.10.002
Sehgal R, Arya S, Kumar VL. Inhibitory effect of extracts of latex of Calotropis procera against Candida albicans: A preliminary study. Indian Journal of Pharmacology 2005; 37(5): 334–335.
Barcellos MP, Santos CBR, Federico LB, et al. Pharmacophore and structure-based drug design, molecular dynamics and admet/tox studies to design novel potential pad4 inhibitors. Journal of Biomolecular Structure and Dynamics 2019; 37(4): 966–981. doi: 10.1080/07391102.2018.1444511
Reich S, Guilligay D, Pflug A, et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 2014; 516: 361–366. doi: 10.1038/nature14009
Venkataraman S, Prasad BVLS, Selvarajan R. RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses 2018; 10(2): 76. doi: 10.3390/v10020076
Liu Z, Zhao J, Li W, et al. Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine. Scientific Reports 2016; 6: 19095. doi: 10.1038/srep19095
Lima SL, Colombo AL, de Almeida Junior JN. Fungal cell wall: Emerging antifungals and drug resistance. Frontiers in Microbiology 2019; 10: 2573. doi: 10.3389/fmicb.2019.02573