Dong brocade, a fabric renowned for its intricate patterns and ethnic symbolism, has been woven by the Dong people for generations, showcasing their cultural significance. Traditional plant dyeing technology is one of the main aspects of Dong brocade but the documentation and understanding of this is still rather limited. With regard to the use of plant dye in Dong brocade, it is not as well explored as it should be since it has a traditional aspect. The main purpose is to investigate and apply the traditional plant dyeing technique to Dong brocade for the improvement of that sustainable concept and the preservation of cultural assets. Therefore, 121 Dong villagers were interviewed to elicit their awareness regarding prehistoric plant dyeing. By observing the dyeing conditions, this study provided accurate perception and learned how to differentiate between natural and synthetic mordants through ethnobotanical perception. The strategy is intended to integrate sustainable products into Dong brocade, employing orthogonal array development to find the right dyeing conditions for corresponding plant dyes. Research revealed that 8 genera of plants which include 7 species are used in dyeing Dong brocade. The findings presented in this work prove the effectiveness of the use of plant dyes in Dong brocade, showing its advantages with 30% of frequency and CI (Color Index) indices, 8% of them being cultural. 5 for ethnic cultural sustainment, developmental and bio-diversity reasons respectively. The unique integration between the traditional dyeing technique in Dong brocade and the utilization of sustainable resources is very promising for the improvement of identity enhancement and embodiment, and the preservation of the environment.
Map is the basic language of geography and an indispensable tool for spatial analysis. But for a long time, maps have been regarded as an objective and neutral scientific achievement. Inspired by critical geography, critical cartography/GIS came into being with the goal of clarifying the discourse embedded in cartographic practice. Power relationship challenges the untested assumption in map representation that is taken for granted. After more than 40 years of debate and running in, this research field has initially shown an outline, and critical cartography/GIS has roughly formed two research directions: the deconstruction path mainly starts from the identity of cartography subject and the process of map knowledge production, and analyzes the inseparable relationship between cartography and national governance and its internal power mechanism respectively; the construction path mainly relies on cooperative mapping and anti-mapping to realize the reproduction of map data. Domestic critical cartography/GIS research has just started, and it is necessary to continue to absorb the achievements of critical geography and carry out research in different historical periods. The deconstruction research of different types of maps also needs to strengthen the in-depth bridging between the construction path and the deconstruction path, and to be more open to the public. Impartial map application research, and actively apply the research results to social practice.
The electron/hole transport layer can promote charge transfer and improve device performance, which is used in perovskite solar cells. The nanoarray structure transport layers can not only further promote carrier transport but also reduce recombination. It also has a great potential in enhancing perovskite light absorption, improving device stability and inhibiting the crack nucleation of different structure layers in perovskite solar cells. This paper reviewed the research progress of perovskite solar cells with different nanoarray structure transport layers. The challenges and development directions of perovskite solar cells based on nanoarray structure transport layers are also summarized and prospected.
Flash flood is one of the major natural hazards in China. It seriously threatens the lives of people and property in mountainous areas. Various methods have been developed for flash flood study, but most of them focused on the past few decades. As one of the effective methods of historical flash flood events reconstruction, dendrogeomorphology has been used worldwide. It can provide hazard information with long temporal scale and high temporal resolution, sometimes at the seasonal level. By comparing tree ring width and other growth characteristics between disturbed and undisturbed trees, growth disturbance signals can be found in the disturbed trees. Using the growth disturbance in tree rings, flash flood events can be dated, and then the frequency, size, and spatial distribution characteristics of flash floods that have no or little documentary records can be reconstructed. The discharge of flash flood can be reconstructed quantitatively according to the height of scars or by using hydraulic models. With the development of dendrogeomorphology, research tends to probe into the meteorological driving mechanism of flash floods and the pattern of flash floods on a larger spatial scale. In the practical application of dendrogeomorphology, more instrumental data and historical records are applied in the studies. This makes the method increasingly more widely used around the world. But work based on dendrogeomorphology has not been reported in China. In this article, we reviewed the development of the study on flash floods based on tree ring, briefly summarized the research progress, and discussed the advantages, limitations, and potential of this approach, so as to provide some reference information for relevant work in China.
Artificial intelligence (AI) has rapidly evolved, transforming industries and addressing societal challenges across sectors such as healthcare and education. This study provides a state-of-the-art overview of AI research up to 2023 through a bibliometric analysis of the 50 most influential papers, identified using Scopus citation metrics. The selected works, averaging 74 citations each, encompass original research, reviews, and editorials, demonstrating a diversity of impactful contributions. Over 300 contributing authors and significant international collaboration highlight AI’s global and multidisciplinary nature. Our analysis reveals that research is concentrated in core journals, as described by Bradford’s Law, with leading contributions from institutions in the United States, China, Canada, the United Kingdom, and Australia. Trends in authorship underscore the growing role of generative AI systems in advancing knowledge dissemination. The findings illustrate AI’s transformative potential in practical applications, such as enabling early disease detection and precision medicine in healthcare and fostering adaptive learning systems and accessibility in education. By examining the dynamics of collaboration, geographic productivity, and institutional influence, this study sheds light on the innovation drivers shaping the AI field. The results emphasize the need for responsible AI development to maximize societal benefits and mitigate risks. This research provides an evidence-based understanding of AI’s progress and sets the stage for future advancements. It aims to inform stakeholders and contribute to the ongoing scientific discourse, offering insights into AI’s impact at a time of unprecedented global interest and investment.
Copyright © by EnPress Publisher. All rights reserved.