While the healthcare landscape continues to evolve, rural-based hospitals face unique challenges in providing quality patient care amidst resource constraints and geographical isolation. This study evaluates the impact of big data analytics in rural-based hospitals in relation to service delivery and shaping future policies. Evaluating the impact of big data analytics in rural-based hospitals will assist in discovering the benefits and challenges pertinent to this hospital. The study employs a positivist paradigm to quantitatively analyze collected data from rural-based hospital professionals from the Information Technology (IT) departments. Through a comprehensive evaluation of big data analytics, this study seeks to provide valuable insights into the feasibility, infrastructure, policies, development, benefits and challenges associated with incorporating big data analytics into rural-based hospitals for day-to-day operations. The findings are expected to contribute to the ongoing discourse on healthcare innovation, particularly in rural-based hospitals and inform strategies for optimizing the implementation and use of big data analytics to improve patient care, decision-making, operations and healthcare sustainability in rural-based hospitals.
The purpose of this study is to investigate the correlation between sponsorship and the performance and development of early career athletes transitioning from junior level to professional sports, because this issue has not been fully explored in the Czech Republic. The reason is the almost absolute absence of financial or material support for such early-career athletes, when their transition from junior categories and the entire junior category is almost always exclusively financed and supported by their parents and families. We also emphasise the absolute absence of legislative provisions that would give supporters of such athletes at least a tax or other advantage. The research is based on research of Cardenas (2023), Hong and Fraser (2023) and Moolman and Shuttleworth (2023) and aims to assess how financial and material support provided by sponsors can enhance an athlete’s performance and long-term career trajectory. A mixed method approach was adopted, combining quantitative analysis through surveys and performance data with qualitative interviews. Data from 173 early career athletes from various disciplines were analysed using t-tests and ANOVA statistical methods to assess financial stability, access to better training, and community participation. Results indicate that sponsorship significantly contributes to better performance metrics, with sponsored athletes showing a 20% improvement in competition results compared to nonsponsored athletes. Furthermore, sponsorship financial support improved training opportunities and access to elite facilities, which was shown to increase athletes’ performance by 15%. However, some challenges related to sponsorship obligations, such as marketing commitments, were highlighted by athletes, underscoring the pressures that sponsorship can introduce. The implications of this study suggest that effective sponsorship strategies can play a vital role in an athlete’s career development, offering not only financial stability but also opportunities for personal branding and increased community engagement. Another implication is a possible consideration for legislators in the context of preparing a legislative framework enabling tax or other benefits for companies and organisations sponsoring or supporting these young athletes. More research is recommended to explore the long-term impact of sponsorship on athlete mental health and career sustainability, as well as the differences in sponsorship effects across various sports disciplines.
Relational database models offer a pathway for the storage, standardization, and analysis of factors influencing national sports development. While existing research delves into the factors linked with sporting success, there remains an unexplored avenue for the design of databases that seamlessly integrate quantitative analyses of these factors. This study aims to design a relational database to store and analyse quantitative sport development data by employing information technology tools. The database design was carried out in three phases: (i) exploratory study for context analysis, identification, and delimitation of the data scope; (ii) data extraction from primary sources and cataloguing; (iii) database design to allow an integrated analysis of different dimensions and production of quantitative indicators. An entity-relationship diagram and an entity-relationship model were built to organize and store information relating to sports, organizations, people, investments, venues, facilities, materials, events, and sports results, enabling the sharing of data across tables and avoiding redundancies. This strategy demonstrated potential for future knowledge advancement by including the establishment of perpetual data updates through coding and web scraping. This, in turn, empowers the continuous evaluation and vigilance of organizational performance metrics and sports development policies, aligning seamlessly with the journal’s focus on cutting-edge methodologies in the realm of digital technology.
This article focuses on studying how transportation connectivity affects Vietnam’s trade with Association of Southeast Asian Nations (ASEAN) countries. By using a gravity model, the article applies fixed effects (FE) and random effects (RE) to analyze panel data on trade, GDP, tariffs, border effects, and indicators. The number represents Vietnam’s transport connectivity with ASEAN countries from 2004 to 2021. Research results show that transport connectivity hurts Vietnam’s trade with other countries. ASEAN. The article proposes solutions for the Government and Vietnamese export enterprises to promote intra-ASEAN trade in the direction of increasing the added value of Vietnam’s imported and exported goods within ASEAN countries and balancing between Developing intra-ASEAN and foreign trade.
Air cargo transportation accounts for less than 1% of the global trade volume, yet it represents approximately 35% of the total value of goods transported, highlighting its strategic importance in trade and economic development. This study investigates the relationship between domestic air cargo transport in Brazil and key macroeconomic variables, focusing on how regional economic dynamism, logistical infrastructure, and population density impact the country’s development. Using a panel data regression model covering the period from 2000 to 2020, the study analyzes the evolution of air cargo transportation and its role in redistributing economic growth across Brazil’s regions. The findings emphasize the key factors influencing the air cargo sector and demonstrate how these factors can be leveraged to optimize public policies and business strategies. This research provides valuable insights into the relevance of air cargo transportation for regional and national development, particularly in emerging economies like Brazil, offering guidance for the formulation of strategies that promote balanced economic growth across regions.
Purpose: This research examines the intricate interplay between Business Intelligence (BI), Big Data Analytics (BDA), and Artificial Intelligence (AI) within the realm of Supply Chain Management (SCM). While the integration of these technologies has promised improved operational efficiency and decision-making capabilities, concerns about complexities and potential overreliance on technology persist. The study aims to provide insights into achieving a balance between data-driven insights and qualitative factors in SCM for sustained competitiveness. Design/methodology/approach: The research executed interviews with ten Arab Gulf-based consulting firms. These companies’ ability to successfully complete BI projects is well recognised. Findings: Through examining the interplay of human judgement and data-driven strategies, addressing integration challenges, and understanding the risks of excessive data reliance, the research enhances comprehension of the modern SCM landscape. It underscores BI’s foundational role, the necessity of balanced human input, and the significance of customer-centric strategies for lasting competitive advantage and relationships. Practical implications: The research provided information for organizations seeking to effectively navigate the complexities of integrating data-driven technologies in SCM. The research is a foundation for future studies to delve deeper into quantitative measurement methodologies and effective data security strategies in the SCM context. Originality: The research highlights the value of integrating BI, BDA, and AI in SCM for improved efficiency, cost reduction, and customer satisfaction, emphasising the need for a balanced approach that combines data-driven insights, human judgement, and customer-centric strategies to maintain competitiveness.
Copyright © by EnPress Publisher. All rights reserved.