Fire, a phenomenon occurs in most parts of the world and causes severe financial losses, even, irreparable damages. Many parameters are involved in the occurrence of a fire; some of which are constant over time (at least in a fire cycle), but the others are dynamic and vary over time. Unlike the earthquake, the disturbance of fire depends on a set of physical, chemical, and biological relations. Monitoring the changes to predict the occurrence of fire is efficient in forest management. Method: In this research, the Persian and English databases were structurally searched using the keywords of fire risk modeling, fire risk, fire risk prediction, remote sensing and the reviewed papers that predicted the fire risk in the field of remote sensing and geographic information system were retrieved. Then, the modeling and zoning data of fire risk prediction were extracted and analyzed in a descriptive manner. Accordingly, the study was conducted in 1995-2017. Findings: Fuzzy analytic hierarchy process (AHP) zoning method was more practical among the applied methods and the plant moisture stress measurement was the most efficient among the remote sensing indices. Discussion and Conclusion: The findings indicate that RS and GIS are effective tools in the study of fire risk prediction.
The world has complex mega-cities and interdependent infrastructures. This complication in infrastructure relations makes it sensitive to disasters and failures. Cascading failure causes blackouts for the whole system of infrastructures during disasters and the lack of performance of the emergency management stakeholders is clear during a disaster due to the complexity of the system. This research aimed to develop a new concurrent engineering model following the total recovery effort. The objectives of this research were to identify the clustered intervention utilized in the field of resilience and developing a cross-functional intervention network to enhance the resilience of societies during a disaster. Content analysis was employed to classify and categorize the intervention in the main divisions and sub-divisions and the grouping of stakeholders. The transposing system was employed to develop an integrated model. The result of this research showed that the operations division achieved the highest weight of information interchange during the response to improve the resilience of the system. The committee of logistics and the committee of rescue and relief needed the widest bandwidth of information flow in the concurrent engineering (CE) model. The contributed CE model helped the stakeholders provide a resilient response system. The final model and the relative share value of exchanging information for each workgroup can speed up recovery actions. This research found that concurrent engineering (CE) is a viable concept to be implemented as a strategy for emergency management. The result of this research can help policymakers achieve a collaborative teamwork environment and to improve resilience factors during emergency circumstances for critical infrastructures.
Small watershed ecological compensation is an important economic means to solve the contradiction between protecting the ecological environment and developing the economy. Taking the Changtian small watershed in the Xixiu District of Anshun City as an example, this paper uses the ecological service function value method to roughly calculate the ecological service function value of the small watershed ecosystem: the ecological service function value of the Changtian small watershed is 913.586 million yuan, and the total amount of ecological compensation is 11.6245 million yuan, of which the farmland system compensation is 1.3194 million yuan, the forest system compensation is 7.5336 million yuan, and the water system compensation is 256,000 yuan, The compensation for the fruit forest system is 2,515,500 yuan. Based on the value of ecosystem service function, the compensated and non-compensated ecosystem service functions are distinguished, and the equivalent factors that different ecosystems can provide compensated ecosystem functions are expressed, so that the determination of ecological compensation amount is scientific and more accurate, and then provides a basis for the determination of ecological compensation standard of the small watershed.
Copyright © by EnPress Publisher. All rights reserved.