During and after any disaster, a situation report (SITREP) is prepared, based on the Daily Incident Updates (DIU), as an initial decision support information base. It is observed that the decision support system and best practices are not optimized through the available formal reporting on disaster incidents. The rapidly evolving situation, misunderstood terms, inaccurate data and delivery delays of DIU are challenges to the daily SITREP. Multiple stakeholders stipulated with different tasks should be properly understood for the SITREP to initiate relevant response tasks. To fill this research gap, this paper identifies the weaknesses of the current practice and discusses the upgrading of the incident-reporting process using a freely available software tool, enabling further visualization, and producing a comprehensive timely output to share among the stakeholders. In this case, “Power-BI” (a data visualization software) is used as a 360-degree view of useful metrics—in a single place, with real-time updates while being available on all devices for operational decision-making. When a dataset is transformed into several analytical reports and dashboards, it can be easily shared with the target users and action groups. This article analyzed two sources of data, namely the Disaster Management Center (DMC) and the National Disaster Relief Service Center (NDRSC) of Sri Lanka. Senior managers of disaster emergencies were interviewed and explored social media to develop a scheme of best practices for disaster reporting, starting from just before the occurrence, and following the unfolding sequence of the disasters. Using a variety of remotely acquired imageries, rapid mapping, grading, and delineating impacts of natural disasters, were made available to concerned users.
Definitive diagnosis of Craniosynostosis (CS) with computed tomography (CT) is readily available, however, exposure to ionizing radiation is often a hard stop for parents and practitioners. Lowering head CT radiation exposure helps mitigate risks and improves diagnostic utilization. The purpose of the study is to quantify radiation exposure from head CT in patients with CS using a ‘new’ (ultra-low dose) protocol; compare prior standard CT protocol; summarize published reports on cumulative radiation doses from pediatric head CT scans utilizing other low-dose protocols. A retrospective study was conducted on patients undergoing surgical correction of CS, aged less than 2 years, between August 2014 and February 2022. Cumulative effective dose (CED) in mSv was calculated, descriptive statistics were performed, and mean ± SD was reported. A literature search was conducted describing cumulative radiation exposure from head CT in pediatric patients and analyzed for ionizing radiation measurements. Forty-four patients met inclusion criteria: 17 females and 27 males. Patients who obtained head CT using the ‘New’ protocol resulted in lower CED exposure of 0.32 mSv ± 0.07 compared to the prior standard protocol at 5.25 mSv ± 2.79 (p < 0.0001). Five studies specifically investigated the reduction of ionizing radiation from CT scans in patients with CS via the utilization of low-dose CT protocols. These studies displayed overall CED values ranging from 0.015 mSv to 0.77 mSv. Our new CT protocol resulted in 94% reduction of ionizing radiation. Ultra-low dose CT protocols provide similar diagnostic data without loss of bone differentiation in CS and can be easily incorporated into the workflow of a children’s hospital.
In marginalized ecosystem-dependent rural communities, access to ecosystem services plays a crucial role in achieving sustainable livelihoods. This study was conducted to find out the influence of various livelihood capital components on the access mechanism for forest-based Provisioning Services (PS) in some selected villages of the Gosaba Block on the fringes of the Sundarban. The contribution of the livelihood capitals to gain access to Provisioning Services (PS) was identified using factor analysis on 160 households, selected through cluster random sampling. The sustainability levels of livelihood capitals were analyzed using the Prescott-Allen method (2001). The natural, financial, social, and physical capitals were significantly below average, while the human capital was close to average. Enhancement of human, physical, financial, and social capital, ease in issuing Biometric Fisherman cards for entering forests, flexibility in borrowing loans, and ecotourism by involving local villagers must be encouraged to enhance forest-based provisioning services in the near future.
A topic of current interest in forestry science concerns the regeneration of degraded forests and areas. Within this topic, an important aspect refers to the time that different forests take to recover their original levels of diversity and other characteristics that are key to resume their functioning as ecosystems. The present work focuses on the premontane rainforests of the central Peruvian rainforest, in the Chanchamayo valley, Junín, between 1,000 and 1,500 masl. A total of 19 Gentry Transects of 2 × 500 m, including all woody plants ≥2.5 cm diameter at breast height were established in areas of mature forests, and forests of different ages after clear-cutting without burning. Five forest ages were considered, 5-10, 20, 30, 40 and ≥50 years. The alpha-diversity and composition of the tree flora under each of these conditions was compared and analyzed. It was observed that, from 40 years of age, Fisher’s alpha-diversity index becomes quite similar to that characterizing mature forests; from 30 years of age, the taxonomic composition by species reached a similarity of 69–73%, like those occurring in mature forests. The characteristic botanical families, genera and species at each of the ages were compared, specifying that as the age of the forest increases, there are fewer shared species with a high number of individuals. Early forests, up to 20 years of age, are characterized by the presence of Piperaceae; after 30 years of age, they are characterized by the Moraceae family.
The physical-mechanical characteristics of leather are crucial in the tanning industry since they determine whether the leather satisfies quality standards for various product manufacture. This study’s goal was to assess the physical-mechanical characteristics of leather that could be washed and used for garments after the Zetestan-GF polymer was added during the tanning process. The data gathered from the physical-mechanical analysis of two treatments—one a control with white leather (T1) and the other with leather treated with Zetestan-GF polymer (T2)—were compared for the development of this work. Each treatment was performed in triplicate, undergoing three washes, yielding a total of 24 samples for analysis. Following the acquisition of the leather, a control was applied and the various treatments were compared. SAS software version 9.0 was utilized for the data’s statistical analysis. The physical-mechanical properties of the control leather and the leather treated with Zetestan-GF polymer were compared using a one-way ANOVA, and any differences in the means (p < 0.05) were assessed using the Tukey test. The findings showed that while the polymer’s application during the tanning process affects the parameters of softness, tensile strength, elongation percentage, and dry and wet flexometry, it has no effect on the lastometry parameter. In conclusion, the physical-mechanical characteristics of the product made by tanning cow hides can be greatly impacted by the inclusion of a polymer.
Land use changes have been demonstrated to exert a significant influence on urban planning and sustainable development, particularly in regions undergoing rapid urbanization. Tehran Province, as the political and economic capital of Iran, has undergone substantial growth in recent decades. The present study employs sophisticated Geographic Information System (GIS) instruments and the Google Earth Engine (GEE) platform to comprehensively track and analyze land use change over the past two decades. A comprehensive analysis of Landsat images of the Tehran metropolitan area from 2003 to 2023 has yielded significant insights into the patterns of land use change. The methodology encompasses the utilization of GIS, GEE, and TerrSet techniques for image classification, accuracy assessment, and change detection. The Kappa coefficients for the maps obtained for 2016 and 2023 were 0.82 and 0.87 for four classes: built-up, vegetation cover, barren land, and water bodies. The findings suggest that, over the past two decades, Tehran Province has undergone a substantial decline in ecological and vegetative areas, amounting to 2.4% (458.3 km2). Concurrently, the urban area and the barren lands have expanded by 287.5 and 125.5 km2, respectively. The increase in water bodies during this period is likely attributable to the reduction of vegetation cover and dam construction in the region. The present study demonstrates that remote sensing and GIS are excellent tools for monitoring environmental and sustainable urban development in areas experiencing rapid urbanization and land use changes.
Copyright © by EnPress Publisher. All rights reserved.