The endogenous, human, and social factors influencing the economic development of the municipalities of San Juan Cotzocón and San Pedro y San Pablo Ayutla in the Istmo de Tehuantepec region of the state of Oaxaca are analyzed. The hypothesis posits that the dimensions of endogenous development, social capital, and human capital directly impact the economic development of the respective municipalities. The study involved administering 262 questionnaires to the residents of these municipalities during the month of May 2023. The collected data were examined using exploratory factor analysis to determine the underlying structure and structural equation modeling to estimate the effects and relationships between variables. Results indicate that endogenous development, social capital, and human capital are factors in the economic development of the studied communities, with endogenous development being the most influential factor due to its statistical significance. Notably, the existence of tourist and cultural attractions in the municipalities emerges as a catalyst for local economic development in response to the establishment and operation of the Isthmus of Tehuantepec Interoceanic Corridor.
Improving the practical skills of Science, Technology, Engineering and Mathematics (STEM) students at a historically black college and university (HBCU) was done by implementing a transformative teaching model. The model was implemented on undergraduate students of different educational levels in the Electrical Engineering (EE) Department at HBCU. The model was also extended to carefully chosen high and middle schools. These middle and high school students serve as a pipeline to the university, with a particular emphasis on fostering growth within the EE Department. The model aligns well with the core mission of the EE Department, aiming to enhance the theoretical knowledge and practical skills of students, ensuring that they are qualified to work in industry or to pursue graduate studies. The implemented model prepares students for outstanding STEM careers. It also increases enrolment, student retention, and the number of underrepresented minority graduates in a technology-based workforce.
An extensive assessment index system was developed to evaluate the integration of industry and education in higher vocational education. The system was designed using panel data collected from 31 provinces in China between 2016 and 2022. The study utilized the entropy approach and coupled coordination degree model to examine the temporal and spatial changes in the level of growth of the integration of industry and education in higher vocational education, as well as the factors that impact it. In order to examine how the integration of industry and education in higher vocational education develops over time and space, as well as the factors that affect it, we utilized spatial phasic analysis, Tobit regression model, and Dagum’s Gini coefficient. The study’s findings suggest that between 2016 and 2022, the integration of industry and education in higher vocational education showed a consistent improvement in overall development. Nevertheless, there are still significant regional differences, with certain areas showing limited levels of integration, while the bulk of regions are either in a state of low integration with high clustering or low integration with low clustering. Most locations showed either a “low-high” or “low-low” level of agglomeration, indicating a significant degree of spatial concentration, with a clear trend of higher concentration in the east and lower concentration in the west. The progress of industrial structure and the degree of regional economic development have a substantial impact on the amount of integration of industry and education in higher vocational education. There is a notable increase in the amount of integration between industry and education in higher vocational education, which has a favorable effect. Conversely, the local employment rate has a substantial negative effect on this integration. Moreover, the direct influence of industrial structure optimization is restricted. The Gini coefficient of the development level of integration of industry and education in higher vocational education exhibits a slight rising trend. Simultaneously, there is a varying increase in the Gini coefficient inside the group and a decrease in the Gini coefficient between the groups. The disparities in the level of integration between Industry and Education in the provincial area primarily stem from inter-group variations across the locations. To promote the integration of industry and education in higher vocational education, it is recommended to strengthen policy support and resource allocation, address regional disparities, improve professional configuration, and increase investment in scientific and technological innovation and talent development.
Copyright © by EnPress Publisher. All rights reserved.