Gout is an arthritis characterized by the deposition of sodium monoacid crystals in the synovial membrane, articular cartilage, and periarticular tissues that leads to an inflamatory process. In most cases, the diagnosis is established by clinical criteria and analysis of the synovial fluid for MSU crystals. However, gout may manifest in atypical ways and make diagnosis difficult. In these situations, imaging studies play a fundamental role in helping to confirm the diagnosis or even exclude other differential diagnoses. Conventional radiography is still the most commonly used method in the follow-up of these patients, but it is a very insensitive test, because it only detects late changes. In recent years, advances in imaging methods have emerged in relation to gout. Ultrasound has proven to be a highly accurate test in the diagnosis of gout, identifying MSU deposits in articular cartilage and periarticular tissues, and detecting and characterizing tophi, tendinopathies, and tophi enthesopathies. Computed tomography is an excellent exam for the detection of bone erosions and evaluation of spinal involvement. Dual-energy computed tomography, a new method that provides information on the chemical composition of tissues, allows identification of MSU deposits with high accuracy. MRI can be useful in the evaluation of deep tissues not accessible by ultrasound. In addition to diagnosis, with the emergence of drugs that aim to reduce the tophaceous burden, imaging examinations become a useful tool in the follow-up treatment of gout patients.
Application of nanoparticles have been proven to aid heat transfer in engineering systems. This work experimentally investigated the performance of a domestic refrigerator under the influence of Al2O3 nanoparticles dispersed in mineral oil based lubricant at different charges (40, 60 and 80 g) of LPG refrigerant. The performance of the system was then investigated using test parameters including: power consumption, evaporator air temperature (pull-down time), to attain the specified International Standard Organisation (ISO) requirement for standard evaporator air temperature with small refrigerator size. Results showed improved pull down time and steady state evaporator air temperatures for the nano-lubricant based LPG. Improvement of about 11.79% in coefficient of performance (COP) was obtained with Al2O3-lubricant based LPG at 40g charge on the refrigerator system, while reduction of about 2.08% and 4.41% in COP were observed at 60 and 80 g charge of LPG based on Al2O3-lubricant respectively. Furthermore, reduction of about 13.4% and 19.53% in the power consumption of the system were observed at 40 and 60g charges of Al2O3-lubricant based LPG, whereas at 80 g, an increase of about 1.28% was recorded. Using Al2O3-LPG nano-refrigerant in domestic refrigerators is economical and also a better alternative to pure LPG.
Using a newly developed data set, we analyze the effects of infrastructure investment on economic performance in Portugal. A vector-autoregressive approach estimates the elasticity and marginal products of twelve types of infrastructure investment on private investment, employment, and output. We find that the largest long-term accumulated effects come from investments in railroads, ports, airports, health, education, and telecommunications. For these infrastructures, the output multipliers suggest that these investments pay for themselves through additional tax revenues. For investments in ports, airports and education infrastructures, the bulk of the effects are short-term demand-side effects, while for railroads, health, and telecommunications, the impact is mostly of a long-term and supply-side nature. Finally, investments in health and airports exhibit decreasing marginal returns, with railroads, ports, and telecommunications being relatively stable. In terms of the other infrastructure assets, the economic effects of investments in municipal roads, electricity and gas, and refineries are insignificant, while investments in national roads, highways, and waste and waste water have positive economic effects but too small to improve the public budget. Clearly, from a policy perspective, not all infrastructure investments in Portugal are created equal.
Polymer waste drilling fluid has extremely high stability, and it is difficult to separate solid from liquid, which has become a key bottleneck problem restricting its resource recycling. This study aims to reveal the stability mechanism of polymer waste drilling fluid and explore the destabilization effect and mechanism of ultrasonic waste drilling fluid. Surface analysis techniques such as X-ray energy spectrum and infrared spectrum were used in combination with colloidal chemical methods to study the spatial molecular structure, stability mechanism, and ultrasonic destabilization mechanism of drilling fluid. The results show that the particles in the drilling fluid exist in two forms: uncoated particles and particles coated by polymers, forming a high molecular stable particle system. Among them, rock particles not coated by polymer follow the vacancy stability and Derjaguin-Landau-Verwey-Overbeek (DLVO) stability mechanism, and the weighting material coated by the polymer surface follows the space stability and DLVO stability mechanism. The results of ultrasonic destabilization experiments show that after ultrasonic treatment at 1000 W power for 5 min, coupled with the addition of 0.02% cationic polyacrylamide, the dehydration rate is as high as 81.0%, and the moisture content of the mud cake is as low as 29.3%, achieving an excellent solid-liquid separation effect. Ultrasound destabilizes polymer waste drilling fluid by destroying the long-chain structure of the polymer. This study provides theoretical support and research direction for the research and development of polymer waste drilling fluid destabilization technology.
Copyright © by EnPress Publisher. All rights reserved.