Natural forests and abandoned agricultural lands are increasingly replaced by monospecific forest plantations that have poor capacity to support biodiversity and ecosystem services. Natural forests harbour plants belonging to different mycorrhiza types that differ in their microbiome and carbon and nutrient cycling properties. Here we describe the MycoPhylo field experiment that encompasses 116 woody plant species from three mycorrhiza types and 237 plots, with plant diversity and mycorrhiza type diversity ranging from one to four and one to three per plot, respectively. The MycoPhylo experiment enables us to test hypotheses about the plant species, species diversity, mycorrhiza type, and mycorrhiza type diversity effects and their phylogenetic context on soil microbial diversity and functioning and soil processes. Alongside with other experiments in the TreeDivNet consortium, MycoPhylo will contribute to our understanding of the tree diversity effects on soil biodiversity and ecosystem functioning across biomes, especially from the mycorrhiza type and phylogenetic conservatism perspectives.
In order to evaluate the temporal changes in tree diversity of forest vegetation in Xishuangbanna, Yunnan Province, the study collected tree diversity data from four main forest vegetation in the region through a quadrat survey including tropical rainforest (TRF), tropical coniferous forest (COF), tropical lower mountain evergreen broad-leaved forest (TEBF), tropical seasonal moist forest (TSMF). We extracted the distribution of four forest vegetation in the region in four periods of 1992, 2000, 2009, and 2016 in combination with remote sensing images, using simp son Shannon Wiener and scaling species diversity indexes compare to the differences of tree evenness of four forest vegetation and use the scaling ecological diversity index and grey correlation evaluation model to evaluate the temporal changes of forest tree diversity in the region in four periods. The results show that: (1) The proportion of forest area has a trend of decreasing first and then increasing, which is shown by the reduction from 65.5% in 1992 to 53.42% in 2000, to 52.49% in 2009, and then to 54.73% in 2016. However, the tropical rainforest shows a continuous decreasing trend. (2) There are obvious differences in the contributions of the four kinds of forest vegetation to tree diversity. The order of evenness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > warm coniferous forest > tropical seasonal humid forest, and the order of richness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm coniferous forest, The order of contribution to tree diversity in tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm tropical coniferous forest. (3) The tree diversity of tropical rainforests and tropical seasonal humid forests showed a continuous decreasing trend. The tree diversity of forest vegetation in Xishuangbanna in four periods was 1992 > 2009 > 2016 > 2000. The above results show that economic activities are an important factor affecting the biodivesity of Xishuangbanna, and the protection of tropical rainforest is of great significance to maintain the biodiversity of the region.
In this investigation the effect of collection seasons of explants (winter, spring and summer), type of explants (leaf disc and intermodal segments) and length of explants (0.5, 1.0 and 1.5 cm) for callusing in low-chill peach were standardized. The maximum callus induction (97.78%) in the low-chill peach was obtained from the intermodal segments of 0.5 cm in length used as an explant collected during spring season. The structural changes on the surface of the callus (5–7 weeks old yellowish green compact callus) during the progress of somatic embryogenesis of low-chill peach from the both intermodal segment as well as leaf disc derived callus were also examined with the use of scanning electron microscope (SEM). The SEM studies indicated that callus derived from internodal segment explant had the highest frequency of somatic embryos than callus from leaf discs. The SEM investigation, also demonstrated the sequential events/steps leading to low-chill peach somatic embryogenesis which was originating from somatic embryo mother cells through one unicellular pathway. Two types of calli were morphologically distinguished in both leaf disc and intermodal segment generated callus and these were the compact, well organized yellowish green embryogenic callus, containing large number of small, rich cytoplasmic, starch containing meristematic cells and soft and unorganized non-embryogenic callus containing sparsely cytoplasmic, vacuolated, and large cells devoid of metabolic reserves. The present SEM studies clearly demonstrated that somatic cells from peach explants generated callus could develop into fully differentiated somatic embryos through the characteristic embryological patterns of differentiation.
Copyright © by EnPress Publisher. All rights reserved.