This study evaluated the efficiency and productivity of the manufacturing industries of Singapore. Singapore is one of the world’s most competitive countries and manufacturing giants. All 21 manufacturing industries as classified by Singapore’s Department of Statistics were included in the study as decision-making units (DMUs). Using the Malmquist DEA on data spanning 2015–2021, we found that excerpt for the Paper and Paper product industry, all industries recorded positive total factor productivity (TFP). TFP ranged from 0.977 to 1.481. In terms of technical efficiency, 14 out of 21 industries showed positive efficiency change. The highest TFP was recorded in 2020 and the lowest in 2016. By measuring and improving efficiency, industries in Singapore can achieve cost savings, increase output, and enhance their competitiveness in the global marketplace. In addition, efficiency measurement can help policymakers identify potential areas for improvement and develop targeted policies to promote sustainable economic growth. Given these benefits, performance measurement is inevitable for industries and policymakers in Singapore to achieve economic objectives. Manufacturing industries need to find ways to manage the size and scale of operations as we flag this as an area for improvement.
Hybrid learning (HL) has become a significant part of the learning style for the higher education sector in the Sri Lankan context amidst the COVID-19 pandemic and the subsequent economic crisis. This research study aims to discover the effectiveness of hybrid learning (EHL) practices in enhancing undergraduates’ outcomes in Sri Lankan Higher Educational Institutions (HEIs) management faculties. The data for the study were gathered through an online questionnaire survey, which received 379 responses. The questionnaire contained 38 questions under four sections covering independent variables, excluding demographic questions. The results indicate that hybrid learner attitude, interaction, and benefits of hybrid learning positively impact the effectiveness of hybrid learning. The results remain consistent even after controlling for socio-demographic factors and focusing only on students employed during their higher education. The study concluded that employed students have a higher preference for the effectiveness of hybrid learning concepts, and the benefits of hybrid learning play a crucial role in enhancing the effectiveness among undergraduates. The study analyzes COVID-19’s impact on higher education, proposing hybrid learning and regulatory frameworks based on pandemic experiences while stressing the benefits of remote teaching and research.
The use of different energy sources and the worry of running out of some of them in the modern world have made factors such as environmental pollution and even energy sustainability vital. Vital resources for humanity include water, environment, food, and energy. As a result, building strong trust in these resources is crucial because of their interconnected nature. Sustainability in security of energy, water and food, generally decreases costs and improves durability. This study introduces and describes the components of a system named “Desktop Energetic Dark Greenhouse” in the context of the quadruple nexus of water, environment, food, and energy in urban life. This solution can concurrently serve to strengthen the sustainable security of water, environment, food, and energy. For home productivity, a small-scale version of this project was completed. The costs and revenues for this system have been determined after conducting an economic study from the viewpoints of the investor and the average household. The findings indicate that the capital return period is around five years from the investor’s perspective. The capital return on investment for this system is less than 4 years from the standpoint of the households. According to the estimates, this system annually supplies about 20 kg of vegetables or herbs, which means about one third of the annual needs of a family.
Two kinds of solar thermal power generation systems (trough and tower) are selected as the research objects. The life cycle assessment (LCA) method is used to make a systematic and comprehensive environmental impact assessment on the trough and tower solar thermal power generation. This paper mainly analyzes the three stages of materials, production and transportation of two kinds of solar thermal power generation, calculates the unit energy consumption and environmental impact of the three stages respectively, and compares the analysis results of the two systems. At the same time, Rankine cycle is used to compare the thermal efficiency of the two systems.
Infrastructure decision-making has traditionally been focused on the use of cost-benefit analysis (CBA) and multicriteria decision analysis (MCDA). Nevertheless, there remains no consensus in the infrastructure sector regarding a favored approach that comprehensively integrates resilience principles with those tools. This review focuses on how resilience has been evaluated in infrastructure projects. Initially, 400 papers were sourced from Web of Science and Scopus. After a preliminary review, 103 papers were selected, and ultimately, the focus was narrowed down to 56 papers. The primary aim was to uncover limitations in both CBA and MCDA, exploring various strategies for amalgamating them and enhancing their potential to foster resilience, sustainability, and other infrastructure performance aspects. Results were classified based on different rationalities: i) objectivist, ii) conformist, iii) adjustive, and iv) reflexive. The analysis revealed that while both CBA and MCDA contribute to decision-making, their perceived strengths and weaknesses differ depending on the chosen rationality. Nonetheless, embracing a broader perspective, fostering participatory methods, and potentially integrating both approaches seem to offer more promising avenues for assessing the resilience of infrastructures. The goal of this research proposal is to devise an integrated approach for evaluating the long-term sustainability and resilience of infrastructure projects and constructed assets.
Copyright © by EnPress Publisher. All rights reserved.