Climate and vegetation are variables of the physical space that have a dynamic and interdependent relationship. Flora modifies climatic elements and gives rise to a microclimate whose characterization is a function of regional climatic conditions and vegetation structure. The objective of this work was to compare the climatic variations (inside and outside) of the Caldén Forest in the Parque Luro Provincial Reserve. Temperature, relative humidity, wind speed, wind direction and precipitation data from two meteorological stations for 2012 were analyzed and statistically compared. The influence of the forest on climatic parameters was demonstrated and it was found that the greatest variations were in wind speed, daily temperature and precipitation.
Small watershed ecological compensation is an important economic means to solve the contradiction between protecting the ecological environment and developing the economy. Taking the Changtian small watershed in the Xixiu District of Anshun City as an example, this paper uses the ecological service function value method to roughly calculate the ecological service function value of the small watershed ecosystem: the ecological service function value of the Changtian small watershed is 913.586 million yuan, and the total amount of ecological compensation is 11.6245 million yuan, of which the farmland system compensation is 1.3194 million yuan, the forest system compensation is 7.5336 million yuan, and the water system compensation is 256,000 yuan, The compensation for the fruit forest system is 2,515,500 yuan. Based on the value of ecosystem service function, the compensated and non-compensated ecosystem service functions are distinguished, and the equivalent factors that different ecosystems can provide compensated ecosystem functions are expressed, so that the determination of ecological compensation amount is scientific and more accurate, and then provides a basis for the determination of ecological compensation standard of the small watershed.
Theoretically, within the diatomic model, the relative stability of most abundant boron clusters B11, B12, and B13 with planar structures in neutral, positive and negative charged-states is studied. According to the specific (per atom) binding energy criterion, B12+ (6.49 eV) is found to be the most stable boron cluster, while B11– + B13+ (5.83 eV) neutral pair is expected to present the preferable ablation channel for boron-rich solids. Obtained results would be applicable in production of boron-clusters-based nanostructured coating materials with super-properties such as lightness, hardness, conductivity, chemical inertness, neutron-absorption, etc., making them especially effective for protection against cracking, wear, corrosion, neutron- and electromagnetic-radiations, etc.
With the development of material life, the importance of plants in life has become increasingly prominent, and indoor flowers are also popular. As we all know, plants have purified air, refreshing brainwashing, promote sleep, sterilization and other effects, such as mint, Clivia, aloe and so on. Therefore, the choice of plants corresponding to their own needs is particularly important, while to note that some flowers should not be placed indoors. And different flowers on the water, temperature, light, soil and other requirements are not the same.
Distributed Energy Resources (DERs), such as solar photovoltaic (PV) systems, wind turbines, and energy storage systems, offer many benefits, including increased energy efficiency, sustainability, and grid reliability. However, their integration into the smart grid also introduces new vulnerabilities to cyber threats. The smart grid is becoming more digitalized, with advanced technologies like Internet of Things (IoT) devices, communication networks, and automation systems that enable the integration of DER systems. While this enhances grid efficiency and control, it creates more entry points for attackers and thus expands the attack surface for potential cyber threats. Protecting DERs from cyberattacks is crucial to maintaining the overall reliability, security, and privacy of the smart grid. The adopted cybersecurity strategies should not only address current threats but also anticipate future dangers. This requires ongoing risk assessments, staying updated on emerging threats, and being prepared to adapt cybersecurity measures accordingly. This paper highlights some critical points regarding the importance of cybersecurity for Distributed Energy Resources (DERs) and the evolving landscape of the smart grid. This research study shows that there is need for a proactive and adaptable cybersecurity approach that encompasses prevention, detection, response, and recovery to safeguard these critical energy systems against cyber threats, both today and in the future. This work serves as a valuable tool in enhancing the cybersecurity posture of utilities and grid-connected DER owners and operators. It allows them to make informed decisions, protect critical infrastructure, and ensure the reliability and security of grid-connected DER systems in an evolving energy landscape.
The search for the development of nanostructured materials has led to the study of the properties of their precursors. For the production of nanofibers by the electrospinning process, it is necessary to determine the rheological parameters of the precursor solutions. Since these properties can be influenced by the processing variables and chemical composition of the polymer, this study aims to elucidate the effect of the addition of vinyl monomers in the formulation of nanofibers based on polyacrylonitrile and to determine the optimal parameters for the production of the precursor polymer solution. The effects of temperature and addition of vinyl monomers were evaluated by rheometry, from the analysis of the variation of the viscosity of the solutions, and by microscopy, the morphology of the nanofibers produced. It was observed that the increase in the temperature used to produce the solutions improves the fibers’ properties. Still, there is a relationship between the time of exposure of the polymeric solution to the temperature and the homogeneity of the fibers, which cannot exceed 45 min. The addition of vinyl monomers, to produce PAN-PVA co-polymeric fibers, increases the conductivity and reduces the viscosity of the solutions, resulting in more refined and homogeneous fibers.
Copyright © by EnPress Publisher. All rights reserved.