2050 building stock might be buildings that already exist today. A large percentage of these buildings fail today’s energy performance standards. Highly inefficient buildings delay progress toward a zero-carbon-building goal (SDGs 7 and 13) and can lead to investments in renewable energy infrastructure. The study aims to investigate how bioclimatic design strategies enhance energy efficiency in selected orthopaedic hospitals in Nigeria. The study objective includes Identifying the bioclimatic design strategies that improve energy efficiency in orthopaedic hospitals, assessing the energy efficiency requirements in an orthopaedic hospital in Nigeria and analysing the effects of bioclimatic design strategies in enhancing energy efficiency in an orthopaedic hospital in Nigeria. The study engaged a mixed (qualitative and quantitative) research method. The investigators used case study research as a research design and a deductive approach as the research paradigm. The research employed a questionnaire survey for quantitative data while the in-depth Interview (IDI) guide and observation schedule for qualitative data. The findings present a relationship between bioclimatic design strategies and energy conservation practices in an orthopaedic hospital building. Therefore, implementing bioclimatic design strategies might enhance energy efficiency in hospital buildings. The result of the study revealed that bioclimatic hospital designs may cost the same amount to build but can save a great deal on energy costs. Despite the challenges, healthcare designers and owners are finding new ways to integrate bioclimatic design strategies into new healthcare construction to accelerate patient and planet healing.
This article describes a classification tool to cluster SARAL/AltiKa waveforms. The tool was made using Python scripts. Radar altimetry systems (e.g., SARAL/AltiKa) measures the distance from the satellite centre to a target surface by calculating the satellite-to-surface round-trip time of a radar pulse. An altimeter waveform represents the energy reflected by the earth’s surface to the satellite antenna with respect to time. The tool clusters the altimetric waveforms data into desired groups. For the clustering, we used evolutionary minimize indexing function (EMIF) with k-means cluster mechanism. The idea was to develop a simple interface which takes the altimetry waveforms data from a folder as inputs and provides single value (using EMIF algorithm) for each waveform. These values are further used for clustering. This is a simple light weighted tool and user can easily interact with it.
This study investigated the students’ perceptions of a self-paced fitness program that is integrated with SitFit, a fitness tracker that measures body inclination during sit-up exercises, and their acceptance of digital innovation in physical education. The data was gathered from a survey of 1001 Thai undergraduates. Results revealed that attitudes toward using the technology and the perceived ease of use were important predictors of behavioral intention to use the sit-up fitness tracker. consistent with previous TAM studies. Subsequently, SitFit was developed based on exercise principles and expert advice to enable users to exercise more effectively while reducing injury risk.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
Synthetic membranes play a crucial role in a wide range of separation processes, including dialysis, electrodialysis, ultrafiltration, and pervaporation, with growing interest in synthetic emulsion membranes due to their precision, versatility, and ion exchange capabilities. These membranes enable tailored solutions for specific applications, such as water and gas separation, wastewater treatment, and chemical purification, by leveraging their multi-layered structures and customizable properties. Emulsion membrane technology, particularly in pressure-driven methods like reverse osmosis (RO) and nanofiltration (NF), has shown great potential in overcoming traditional challenges, such as fouling and energy inefficiency, by improving filtration efficiency and selectivity. This review explores the latest advancements in emulsion membrane development, their adaptability to various industrial needs, and their contribution to addressing long-standing limitations in membrane separation technologies. The findings underscore the promise of emulsion membranes in advancing industrial processes and highlight their potential for broader applications in water treatment, environmental management, and other key sectors.
High-quality implementation of cross-border mergers and acquisitions (cross-border M&As) is an important pathway for emerging-market multinational enterprises (EMNEs) to enhance their international competitiveness. However, in comparison to developed countries, cross-border M&As by EMNEs are often prohibited by the liability of origin caused by negative political coverage. How and why negative political coverage affect the completion of cross-border M&As by EMNEs? What are the contextual constraints that moderate the impact of negative political coverage on cross-border M&As completion? Based on the “liability of origin” theory, this paper addresses these questions using data from the Zephyr database on cross-border M&As by EMNEs in the United States from 2016 to June 2021 and employing a logit model for estimation. The research findings are as follows: (1) Negative political coverage leads to negative perceptions of emerging market countries by host country stakeholders, creating the liability of origin and stigmatizing the corporate nationality, thereby reducing the success rate of cross-border M&As by EMNEs. (2) Increasing geographical distance leads to information asymmetry, reinforcing the negative impact of negative political coverage on the completion of cross-border M&As by EMNEs. (3) Relevant mergers and acquisitions exacerbate the negative effect of negative political coverage on the success rate of cross-border M&As by EMNEs. (4) Being a publicly traded firm and having successful experience in cross-border M&As both intensify the negative impact of negative political coverage on the success rate of cross-border M&As by EMNEs.
Copyright © by EnPress Publisher. All rights reserved.