In view of the fact that the convolution neural network segmentation method lacks to capture the global dependency of infected areas in COVID-19 images, which is not conducive to the complete segmentation of scattered lesion areas, this paper proposes a COVID-19 lesion segmentation method UniUNet based on UniFormer with its strong ability to capture global dependency. Firstly, a U-shaped encoder-decoder structure based on UniFormer is designed, which can enhance the cooperation ability of local and global relations. Secondly, Swin spatial pyramid pooling module is introduced to compensate the influence of spatial resolution reduction in the encoder process and generate multi-scale representation. Multi-scale attention gate is introduced at the skip connection to suppress redundant features and enhance important features. Experiment results show that, compared with the other four methods, the proposed model achieves better results in Dice, loU and Recall on COVID-19-CT-Seg and CC-CCIII dataset, and achieves a more complete segmentation of the lesion area.
The presence of a crisis has consistently been an inherent aspect of the Supply Chain, mostly as a result of the substantial number of stakeholders involved and the intricate dynamics of their relationships. The objective of this study is to assess the potential of Big Data as a tool for planning risk management in Supply Chain crises. Specifically, it focuses on using computational analysis and modeling to quantitatively analyze financial risks. The “Web of Science—Elsevier” database was employed to fulfill the aims of this work by identifying relevant papers for the investigation. The data were inputted into VOS viewer, a software application used to construct and visualize bibliometric networks for subsequent research. Data processing indicates a significant rise in the quantity of publications and citations related to the topic over the past five years. Moreover, the study encompasses a wide variety of crisis types, with the COVID-19 pandemic being the most significant. Nevertheless, the cooperation among institutions is evidently limited. This has limited the theoretical progress of the field and may have contributed to the ambiguity in understanding the research issue.
Cooperatives have become significant contributors to the realization of the Sustainable Development Goals No. 1: No Poverty. Transitioning associations to cooperatives is crucial for promoting sustainable economic development, empowering communities, and enhancing collective well-being. This research assessed the readiness of Small-Scale Fisheries (SSF) communities in the Global South to form a cooperative. This research employed an exploratory research approach in six coastal Barangays of Batad, situated in the 5th District of Iloilo Province. The findings indicated that respondents have a slight level of awareness with regard to the advantages and economic advantages associated with becoming part of a cooperative. On the other hand, there was a clear difference in members’ perceptions of the benefits and financial returns that comes with belonging to a cooperative. According to the study, females are more likely to support the association’s move towards a cooperative structure, especially younger individuals. The main issue highlighted was the lack of skilled officers and inadequate resources and training for association members. A lecture on Cooperative Awareness and capability trainings on financial management, bookkeeping, and credit management should be organized in order to increase associations readiness to be a cooperative.
This paper provides a comprehensive review of SURF (speeded up robust features) feature descriptor, commonly used technique for image feature extraction. The SURF algorithm has obtained significant popularity because to its robustness, efficiency, and invariance to various image transformations. In this paper, an in-depth analysis of the underlying principles of SURF, its key components, and its use in computer vision tasks such as object recognition, image matching, and 3D reconstruction are proposed. Furthermore, we discuss recent advancements and variations of the SURF algorithm and compare it with other popular feature descriptors. Through this review, the aim is to provide a clear understanding of the SURF feature descriptor and its significance in the area of computer vision.
This study aims to investigate the effectiveness of community involvement in waste management through participatory research. Its objective is to bridge the theoretical underpinnings of participatory research with its practical implementation, particularly within the realm of waste management. The review systematically analyzes global instances where community engagement has been incorporated into waste management initiatives. Its principal aim is to evaluate the efficacy of participatory strategies by scrutinizing methodologies and assessing outcomes. To achieve this, the study identified 74 studies that met rigorous criteria through meticulous search efforts, encompassing various geographical locations, cultural contexts, and waste management challenges. In examining the outcomes of participatory research in waste management, the study explores successful practices, shortcomings, and potential opportunities. Moving beyond theoretical discourse, it provides a detailed analysis of real-world applications across various settings. The evaluation not only highlights successful engagement strategies and indicators but also critically assesses challenges and opportunities. By conducting a comprehensive review of existing research, this study establishes a foundation for future studies, policy development, and the implementation of sustainable waste management practices through community engagement. The overarching goal is to derive meaningful insights that contribute to a more inclusive, effective, and globally sustainable approach to waste management. This study seeks to inform policymaking and guide future research initiatives, emphasizing the importance of community involvement in addressing the complexities of waste management on a global scale.
Copyright © by EnPress Publisher. All rights reserved.