The world has complex mega-cities and interdependent infrastructures. This complication in infrastructure relations makes it sensitive to disasters and failures. Cascading failure causes blackouts for the whole system of infrastructures during disasters and the lack of performance of the emergency management stakeholders is clear during a disaster due to the complexity of the system. This research aimed to develop a new concurrent engineering model following the total recovery effort. The objectives of this research were to identify the clustered intervention utilized in the field of resilience and developing a cross-functional intervention network to enhance the resilience of societies during a disaster. Content analysis was employed to classify and categorize the intervention in the main divisions and sub-divisions and the grouping of stakeholders. The transposing system was employed to develop an integrated model. The result of this research showed that the operations division achieved the highest weight of information interchange during the response to improve the resilience of the system. The committee of logistics and the committee of rescue and relief needed the widest bandwidth of information flow in the concurrent engineering (CE) model. The contributed CE model helped the stakeholders provide a resilient response system. The final model and the relative share value of exchanging information for each workgroup can speed up recovery actions. This research found that concurrent engineering (CE) is a viable concept to be implemented as a strategy for emergency management. The result of this research can help policymakers achieve a collaborative teamwork environment and to improve resilience factors during emergency circumstances for critical infrastructures.
On the basis of the enlightenment of international engineering education accreditation for the reform and development of higher education in China, combined with the important measures of the national “double first-class” construction, new challenges have been proposed for innovative talent cultivation among engineering majors in the context of promoting national development. These challenges also promote the reform of science-oriented courses among engineering majors. As a core mandatory course for engineering majors, biochemistry plays a crucial role in the entire educational process at universities, serving as a bridge between basic and specialized courses. To address challenges such as limited course resources, insufficient development of students’ advanced thinking and innovation skills, and overly standardized assessment methods, the bioengineering major from Guilin University of Technology restructured the biochemistry course content. A blended teaching model termed “three integrations, three stages, one sharing”, was implemented. This effort has yielded significant results, providing a research foundation for constructing an innovative talent cultivation system that is oriented toward industry needs within modern industrial colleges. It also offers valuable insights into and reference points for the cultivation of engineering talents and curriculum reform in local universities.
Functions are the core of algebra, and the teaching of function concepts is also the main task of high school mathematics Students' learning of functions and their concepts shifts from understanding specific quantitative relationships to understanding abstract quantitative relationships The monotonicity of functions, as the property of the first function that students learn in high school, lays a certain foundation for learning function related knowledge in the future.
Objectives: The unprecedented COVID-19 pandemic has intensified the stress on blood banks and deprived the blood sources due to the containment measures that restrict the movement and travel limitations among blood donors. During this time, Malaysia had a significant 40% reduction in blood supply. Blood centers and hospitals faced a huge challenge balancing blood demand and collection. The health care systems need a proactive plan to withstand the uncertain situation such as the COVID-19 pandemic. This study investigates the psychosocial factors that affect blood donation behavior during a pandemic and aims to propose evidence-based strategies for a sustainable blood supply. Study design: Qualitative design using focus group discussion (FGD) was employed. Methods: Data were acquired from the two FGDs that group from transfusion medicine specialists (N = 8) and donors (N = 10). The FGD interview protocol was developed based on the UTM Research Ethics Committee’s approval. Then, the data was analyzed using Nvivo based on the General Inductive Approach (GIA). Results: Analysis of the text data found that the psychology of blood donation during the pandemic in Malaysia can be classified into four main themes: (i) reduced donation; (ii) motivation of donating blood; (iii) trends of donation; and (iv) challenges faced by the one-off, occasional, and non-donors. Conclusions: Based on the emerging themes from the FGDs, this study proposes four psycho-contextual strategies for relevant authorities to manage sustainable blood accumulation during the pandemic: (1) develop standard operating procedure for blood donors; (2) organize awareness campaigns; (3) create a centralized integrated blood donors database; and (4) provide innovative Blood Donation Facilities.
Copyright © by EnPress Publisher. All rights reserved.