The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
Climate change has affected the coasts of the world due to numerous factors, including the change in the intensity and frequencies of the storms and the increase in the mean sea level, among others. Argentina has extensive coastal areas, and research and monitoring tasks are expensive and require a significant number of personnel to cover large geographical areas. Given this, citizen science has become a tool to increase scientific research's spatial and temporal extension. Therefore, the paper aims to analyze the methodology and development of the citizen science project in Villa Gesell and its lessons for applying them in future coastal environmental monitoring projects. The methodology was based on an experience of the project co-created between activists and researchers. This project included four phases for social and physical aspects: training for the citizens, theoretic and practical aspects of coastal dynamics, and how to measure its geomorphological and oceanographic variations; data collection: the activists who received the training performed the measurements to monitor the beach; data analysis by scientists; and dissemination of results; the report data were disseminated by citizens in their community. The analysis of case studies in citizen science projects generates a fundamental learning arena to apply in future projects. Among the positive aspects were the phases established for their development and the methodology used to collect beach monitoring data.
This study aims to explore the perceptions of the Scholarship of Teaching and Learning (SoTL) of primary and secondary school teachers in C City, China, as well as the challenges they face in developing these abilities. Through narrative inquiry involving five current teachers, the research collected their personal experiences in the development of teaching and academic abilities, with data gathered through semi-structured interviews. The findings reveal that teachers are primarily driven by external forces, professional identity, personal growth, and the need to improve teaching quality in their efforts to enhance teaching and academic abilities. However, they also encounter challenges such as teaching pressures, time management difficulties, insufficient school support, and declining energy. To overcome these obstacles, teachers have adopted strategies such as time management, task allocation, and cognitive enhancement. The study concludes by recommending that through the combined efforts of teachers, schools, and society, a strong professional belief system should be established, and a supportive environment should be created to collaboratively promote the development of teaching and academic abilities among primary and secondary school teachers, thereby fostering their professional growth.
Modern technologies have intensified innovations and necessitated changes in public service processes and operations. Continuous employee learning development (CELD) is one means of the molecule-atom that keep employees motivated and sustain competitiveness. The study explored the efficacy of CELD in relation to modern technology in the South African (SA) public service departments between 2014 to 2023 era. Departments are faced with challenge of equipping their employees with adequate professional and technical skills for both the present and the future in order to deliver specific government priorities. Data for the study were gathered utilizing a qualitative semi-structured e-questionnaire. The study sample consisted of 677 human capital development practitioners from national and provincial government departments in SA. The inefficacy CELD and the inadequacy of technological infrastructure and service delivery can be attributed to the failure by executive management and senior managers to invest in CELD to prepare employees for digital world. It is recommended that departments should use Ruggles’s knowledge management, Kirkpatrick’s training, and Becker and Schultz’s human capital models as sound measurement tools in order to gain a true return on investment. The study adds pragmatic insight into the value of CELD in the new technological environment in public service departments.
In the evolving landscape of the 21st century, universities are at the forefront of re-imagining their infrastructural identity. This conceptual paper delves into the transformative shifts witnessed within university infrastructure, focusing on the harmonisation of tangible physical assets and the expanding world of digital evolution. As brick-and-mortar structures remain pivotal, integrating digital platforms rapidly redefines the academic landscape, optimising learning and administrative experiences. The modern learning paradigm, enriched by this symbiotic relationship, offers dynamic, flexible, and comprehensive educational encounters, thereby transcending traditional spatial and temporal constraints. Therefore, this paper accentuates the broader implications of this infrastructural metamorphosis, particularly its significant role in driving economic development. The synergistic effects of physical and digital infrastructures enhance academic excellence and position universities as key players in addressing and navigating global challenges, setting forth a resilient and forward-looking educational blueprint for the future. In conclusion, integrating physical and digital infrastructures within universities heralds a transformative era, shaping a holistic, adaptable, and enriched academic environment poised to meet 21st-century challenges. This study illuminates the symbiotic relationship between tangible university assets and digital innovations, offering insights into their collective impact on modern education and broader economic trajectories.
Copyright © by EnPress Publisher. All rights reserved.