In marginalized ecosystem-dependent rural communities, access to ecosystem services plays a crucial role in achieving sustainable livelihoods. This study was conducted to find out the influence of various livelihood capital components on the access mechanism for forest-based Provisioning Services (PS) in some selected villages of the Gosaba Block on the fringes of the Sundarban. The contribution of the livelihood capitals to gain access to Provisioning Services (PS) was identified using factor analysis on 160 households, selected through cluster random sampling. The sustainability levels of livelihood capitals were analyzed using the Prescott-Allen method (2001). The natural, financial, social, and physical capitals were significantly below average, while the human capital was close to average. Enhancement of human, physical, financial, and social capital, ease in issuing Biometric Fisherman cards for entering forests, flexibility in borrowing loans, and ecotourism by involving local villagers must be encouraged to enhance forest-based provisioning services in the near future.
This research focuses on addressing critical driving safety issues on university campuses, particularly vehicular congestion, inadequate parking, and hazards arising from the interaction between vehicles and pedestrians. These challenges are common across campuses and demand effective solutions to ensure safe and efficient mobility. To address these issues, the study developed detailed microsimulation models tailored to the Victor Levi Sasso campus of the Technological University of Panama. The primary function of these models is to evaluate the effectiveness of various safety interventions, such as speed reducers and parking reorganization, by simulating their impact on traffic flow and accident risk. The models provide calculations of traffic parameters, including speed and travel time, under different safety scenarios, allowing for a comprehensive assessment of potential improvements. The results demonstrate that the proposed measures significantly enhance safety and traffic efficiency, proving the model’s effectiveness in optimizing campus mobility. Although the model is designed to tackle specific safety concerns, it also offers broader applicability for addressing general driving safety issues on university campuses. This versatility makes it a valuable tool for campus planners and administrators seeking to create safer and more efficient traffic environments. Future research could expand the model’s application to include a wider range of safety concerns, further enhancing its utility in promoting safer campus mobility.
The objective of this research was to evaluate the unit rates of MSW generation in Cumba in the years 2016 and 2022. The calculations were based on the weights of the MSW disposed in the dump located 5 km from the city of Cumba since 2012. The GPC, physical composition, density, humidity were determined in the years 2016 and 2022, studied according to the methodology and group classification of Peruvian regulations. The results show that 5.45 Tn/day−1 are generated in 2016, 4.37 Tn/day−1 in 2022; according to its physical composition, 82% RO, 14% MICVC and 4% MISVC in 2016; 77% RO, 16% MICVC, 7% MISVC in 2022; density 137.90 kg/m−3 in 2016 and 172.69 kg/m−3 in 2022; humidity 67.67% in 2016 and 63.43% in 2022. It was also found that in 100.00% there is no solid waste treatment; Everything generated in homes, businesses and streets is evacuated to the final disposal site, which is a dump. In 2022, Cumba acquired 10 hectares to have adequate sanitary infrastructure and begin the closure and recovery of its current dump. This study will contribute to providing accurate data on MSW generation that allows the local government to promote the optimization of collection routes and schedules, resulting in cost savings and reduction of carbon emissions in the Amazon Region. Therefore, it is necessary to raise awareness at all levels of society through various means of communication and education, so that the risks of spreading health risks can be minimized by improving MSW management.
Copyright © by EnPress Publisher. All rights reserved.