This study examines the determinants of audit quality and their impact on detecting financial statement fraud at public accounting firms member of OAI Solusi Manajemen Nusantara in Indonesia. Using a quantitative approach, data was collected through a structured questionnaire distributed to auditors and staff. Key findings highlight the significant influence of auditor independence, professional proficiency, and supervision actions on conducting effective audits, thereby enhancing fraud detection capabilities. The research identifies challenges such as the focus on Indonesian firms and potentially limiting broader applicability. Recommendations include enhancing auditor training, adopting stringent audit procedures and technology, and ensuring adherence to auditing standards to improve audit quality and uphold financial reporting integrity. This study underscores the critical role of audit quality in preventing and detecting financial statement fraud, suggesting avenues for future research to explore additional influencing factors.
Since the proposal of the low-carbon economy plan, all countries have deeply realized that the economic model of high energy and high emission poses a threat to human life. Therefore, in order to enable the economy to have a longer-term development and comply with international low-carbon policies, enterprises need to speed up the transformation from a high-carbon to a low-carbon economy. Unfortunately, due to the massive volume of data, developing a low-carbon economic enterprise management model might be challenging, and there is no way to get more precise forecast data. This study tackles the challenge of developing a low-carbon enterprise management mode based on the grey digital paradigm, with the aim of finding solutions to these issues. This paper adopts the method of grey digital model, analyzes the strategy of the enterprise to build the model, and makes a comparative experiment on the accuracy and performance of the model in this paper. The results show that the values of MAPE, MSE and MAE of the model in this paper are the lowest. And the r^2 of the model in this paper is also the highest. The MAPE value of the model in this paper is 0.275, the MSE is 0.001, and the MAE is 0.003. These three indicators are much lower than other models, indicating that the model has high prediction accuracy. r2 is 0.9997, which is much higher than other models, indicating that the performance of this model is superior. With the support of this model, the efficiency of building an enterprise model has been effectively improved. As a result, developing an enterprise management model for the low-carbon economy based on the gray numerical model can offer businesses new perspectives into how to quicken the shift to the low-carbon economy.
Credit risk assessment is one of the most important aspects of financial decision-making processes. This study presents a systematic review of the literature on the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in credit risk assessment, offering insights into methodologies, outcomes, and prevalent analysis techniques. Covering studies from diverse regions and countries, the review focuses on AI/ML-based credit risk assessment from consumer and corporate perspectives. Employing the PRISMA framework, Antecedents, Decisions, and Outcomes (ADO) framework and stringent inclusion criteria, the review analyses geographic focus, methodologies, results, and analytical techniques. It examines a wide array of datasets and approaches, from traditional statistical methods to advanced AI/ML and deep learning techniques, emphasizing their impact on improving lending practices and ensuring fairness for borrowers. The discussion section critically evaluates the contributions and limitations of existing research papers, providing novel insights and comprehensive coverage. This review highlights the international scope of research in this field, with contributions from various countries providing diverse perspectives. This systematic review enhances understanding of the evolving landscape of credit risk assessment and offers valuable insights into the application, challenges, and opportunities of AI and ML in this critical financial domain. By comparing findings with existing survey papers, this review identifies novel insights and contributions, making it a valuable resource for researchers, practitioners, and policymakers in the financial industry.
The current business environment characterized by volatility, uncertainty, complexity, and ambiguity (VUCA) advances numerous challenges for organizations. To respond effectively to these changing demands, traditional approaches to solving problems often prove inadequate in this dynamic context. A new approach, the ProCESS methodology, was developed and tested in the last three years within an Erasmus+ consortium in four European countries. This approach stimulates unconventional thinking and the finding of creative solutions for real-world business challenges. The aim of this perspective paper is to present the research data collected in two Romanian companies by testing ProCESS methodology. In the discussion section, the paper highlights the potential of this methodology that uses various artistic tools like drawing, music, modeling, or meditation to encourage participants to tap into their sensory, emotional, and spiritual sides for finding new and unexpected solutions. The paper also discusses potential influences on organizational culture and employee well-being.
Simulation training in dental medical eduaction is a modern high-tech approach in providing quality higher education. Simulation training immerses students in realistic scenarios, allowing them to develop both technical and non-technical skills essential for effective patient care. This study highlights key contemporary issues in high-tech simulation training for dental education and consolidates its rationale and benefits. We searched the databases PubMed, Scopus, Web of Science, and ResearchGate. This review includes 36 articles published in English, Russian, and Ukrainian from 2020 to 2024. Non-peer-reviewed papers or those not published in indexed journals were not considered. Simulation training was found to impact integration of theory and practice, training a wide range of psychomotor skills, development of complex clinical competences, cultivating confidence, empathy and patient-oriented care, neuroplasticity of the brain and the cognitive load. Pedagogical benefits and the place of simulation training in the curriculum were also discussed.
This study aims to investigate the enhancement in electrical efficiency of a polycrystalline photovoltaic (PV) module. The performance of a PV module primarily depends upon environmental factors like temperature, irradiance, etc. Mainly, the PV module performance depends upon the panel temperature. The performance of the PV module has an inverse relationship with temperature. The open circuit voltage of a module decreases with the increase in temperature, which consequently leads to the reduction in maximum power, efficiency, and fill factor. This study investigates the increase in the efficiency of the PV module by lowering the panel temperature with the help of water channel cooling and water-channel accompanied with forced convection. The two arrangements, namely, multi-inlet outlet and serpentine, are used to decrease the temperature of the polycrystalline PV module. Copper tubes in the form of the above arrangements are employed at the back surface of the panel. The results demonstrate that the combined technique is more efficient than the simple water-channel cooling technique owing to multi-heat dissipation and effective heat transfer, and it is concluded that the multi-inlet outlet cooling technique is more efficient than the serpentine cooling technique, which is attributed to uniform cooling over the surface and lesser pressure losses.
Copyright © by EnPress Publisher. All rights reserved.