This study examines the spatial distribution of consumption competitiveness and carrying capacity across regions, exploring their interrelationship and implications for sustainable regional development. An evaluation index system is constructed for both consumption competitiveness and carrying capacity using a range of economic, social, and environmental indicators. We apply this framework to regional data in China and analyze the resultant spatial patterns. The findings reveal significant regional disparities: areas with strong consumption competitiveness are often concentrated in economically developed regions, while high carrying capacity is notable in less populated or resource-rich areas. Notably, a mismatch emerges in some regions—high consumer demand is not always supported by adequate carrying capacity, and vice versa. These disparities highlight potential sustainability challenges and opportunities. In the discussion, we address reasons behind the spatial mismatch and propose policy implications to better align consumer market growth with regional resource and environmental capacity. The paper concludes that integrating consumption-driven growth strategies with carrying capacity considerations is essential for balanced and sustainable regional development.
This work aimed to evaluate the effects of using three different substrates in the semi-hydroponic culture of lettuce (Lactuca sativa L.) using two different nutrient solutions. A first trial was performed with a nutrient solution rich in macronutrients and micronutrients suitable for lettuce culture, and a second trial with a nutrient solution with pretreated wastewater from effluents of a cheese factory. The experimental design was in randomized blocks with three repetitions and three substrates were used: perlite, coconut fiber, and expanded clay, in both trials. The following parameters were observed: number of leaves, diameter of the cabbage, fresh and dry weight of the aerial part, chlorophyll index and mineral composition of the lettuce. For the first trial, the highest result for the number of leaves (20 leaves), fresh weight (142.0 g) and dry weight (7.2 g) of the aerial part was obtained in the plants growing on perlite. In the second trial, the highest result for the number of leaves (28 leaves), diameter of cabbage (26.7 cm), fresh weight (118.8 g) and dry weight (9.5 g) of the aerial part were achieved by the plants that were grown in coconut fiber. The nutrient solutions were analyzed after each irrigation cycle to verify the possibility of their discharge into the environment. Several parameters were analyzed: pH, conductivity, redox potential, nitrates, nitrites, ammoniacal nitrogen, chlorides, hardness, calcium, phosphates, sodium, potassium, chemical oxygen demand (COD) and magnesium. Ammoniacal nitrogen was found to be the only nutrient that can limits the discharge of nutrient solutions into the environment. It was also proven that the plants, besides obtaining the nutrients necessary for their development in the semi-hydroponic system with the nutrient solution with pre-treated residual water, also functioned as a purification system, allowing the said nutrient solution to be discharged into the environment at the end of each cycle.
The intermittent flow cold storage heat exchanger is one of the most important components of the pulse tube expansion refrigerator based on the reverse Brayton cycle. In the experimental system, the volume and heat transfer of the helical tube play a decisive role in the stable operation of the whole experimental system. However, there are few studies on heat transfer in a helical tube under helium working medium and intermittent flow conditions. In this paper, a process and method for calculating the volume of a helical tube are proposed based on the gas vessel dynamics model. Subsequently, a three-dimensional simulation model of the helical tube was established to analyze the heat transfer process of cryogenic helium within the tube. The simulations revealed that the temperature of helium in the tube decreases to the wall temperature and does not change when the helical angle exceeds 720°. Moreover, within the mass flow rate range of 1.6 g/s to 3.2 g/s, an increase in the mass flow rate was found to enhance the heat transfer performance of the helical tube. This study provides a reference for the selection and application of a helical tube under intermittent flow conditions and also contributes to the experimental research of inter-wall heat exchanger and pulse tube expansion refrigerators.
This study investigates the impact of extreme rainfall events on soil erosion in the downstream Parnaíba River Basin, located in the Brazilian Cerrado. The analysis focused on rainfall erosivity (R factor) and soil erodibility (K factor) as key indicators. The average erosivity in the region was 9051 MJ mm h−1ha−1year−1, with a variation between 7943 and 10,081 MJ mm h−1ha−1year−1, suggesting a high erosive potential, mainly in the rainiest months, from December to April. The soils of the studied area, mainly Ultisols and Chernosols, present high to very high erodibility, with K factor values ranging from 0.025 to 0.050 t h MJ−1 mm−1. Furthermore, fieldwork revealed areas, near highways, with apparently fragile soils, as well as rills and gullies, identified through photographs taken during fieldwork. These locations, due to the combination of high erosivity and susceptible soils, were considered prone to the occurrence of erosion processes, representing an additional risk to local infrastructure. The spatialization of R and K factors, along with field observations, showed that much of the area is at high risk of erosion and landslides, particularly in regions with greater topographic variability and proximity to water bodies. These results provide a basis for the development of mitigation strategies, being important for the effective prevention of landslides.
With its inherent characteristics of decentralization, immutability, and transparency, blockchain technology presents a promising opportunity to revolutionize the South African food supply chains. Blockchain technology, with its decentralized, immutable, and secure nature, offers solutions to these challenges by improving traceability and accountability across the supply chain. This study investigates the role of blockchain technology in enhancing transparency in the food supply chain among small and medium enterprises in South Africa. SMEs form a critical part of the country's agri-food sector but face challenges such as food fraud, inefficient inventory management, and lack of transparency, which impact food safety and trust. The research adopts a mixed-method approach, utilizing the Technology-Organization-Environment framework and Institutional Theory to explain blockchain adoption among SMEs. The results demonstrate that blockchain-enabled practices, such as smart contracts, records traceability, production tracking, and distribution monitoring, significantly enhance supply chain transparency. The findings highlight blockchain's potential to increase operational efficiency, regulatory compliance, and stakeholder trust. This research provides valuable insights for policymakers and practitioners, emphasizing the need for regulatory support and strategic investment in blockchain solutions to promote sustainability and competitiveness in the agri-food sector.
This paper aims to explore how developing countries like Indonesia have an approach to managing talent to enhance career development using an application system. The application of talent management in the career development of civil servants in Indonesia includes planning, implementing, monitoring, and evaluating career development. Talent management is essential for the government sector and can help improve employee quality, organizational performance, and the achievement of human potential. This research aims to examine the application of talent management in organizations and develop a state civil apparatus information system (SI-ASN) to support the career development process of civil servants. The research methods used include library research and field research, including interviews with competent officials in West Java Province as primary data. The qualitative data was collected in 2022–2023. The results of this study show that the application of talent management for civil servants in Indonesia is considered appropriate, as it directs employees to positions that are in line with their qualifications, competencies and performance. However, it requires an improvement in the methods used, particularly for competency tests, which may be conducted with new methods that are more efficient in terms of budget and time. The study concluded that the application of talent management in the career development of civil servants in Indonesia has a positive impact on the quality of leaders and organizations because it ensures that the appointed leaders are the most competent ones in the field and shows the importance of talent management in succession planning and the career development of civil servants.
Copyright © by EnPress Publisher. All rights reserved.