Fire hazard is often mapped as a static conditional probability of fire characteristics’ occurrence. We developed a dynamic product for operational risk management to forecast the probability of occurrence of fire radiative power in the locally possible near-maximum fire intensity range. We applied standard machine learning techniques to remotely sensed data. We used a block maxima approach to sample the most extreme fire radiative power (FRP) MODIS retrievals in free-burning fuels for each fire season between 2001 and 2020 and associated weather, fuel, and topography features in northwestern south America. We used the random forest algorithm for both classification and regression, implementing the backward stepwise repression procedure. We solved the classification problem predicting the probability of occurrence of near-maximum wildfire intensity with 75% recall out-of-sample in ten annual test sets running time series cross validation, and 77% recall and 85% ROC-AUC out-of-sample in a twenty-fold cross-validation to gauge a realistic expectation of model performance in production. We solved the regression problem predicting FRP with 86% r2 in-sample, but out-of-sample performance was unsatisfactory. Our model predicts well fatal and near-fatal incidents reported in Peru and Colombia out-of-sample in mountainous areas and unimodal fire regimes, the signal decays in bimodal fire regimes.
Tidal sea level variations in the Mediterranean basin, although altered and amplified by resonance phenomena in confined sub-basins (e.g., Adriatic Sea), are generally confined within 0.5 meters and exceptionally up to 1.5 meters. Here we explore the possibility of retrieving sea level measurements using data from GNSS antennas on duty for ground motion monitoring and analyze the spectral outcomes of such distinctive measurements. We estimate one year of GNSS data collected on the Mediterranean coasts in order to get reliable sea level data from all publicly available data and compare it with collocated tide gauges. A total of eleven stations were suitable for interferometric analysis (as of 2021), and all were able to supply centimeter-level sea level estimates. The spectra in the tidal frequency windows are remarkably similar to tide gauge data. We find that the O1 and M2 diurnal and semidiurnal tides and MK3, MS4 shallow sea water tides may be disturbed by aliasing effects.
The paper examines the underlying science determining the performance of hybrid engines. It scrutinizes a full range of orthodox gasoline engine performance data, drawn from two sources, and how it would be modified by hybrid gasoline vehicle engine operation. The most significant change would be the elimination of the negative consequences of urban congestion, stop-start, and engine driving, in favour of a hybrid electric motor drive. At intermediate speeds there can be other instances where electric motors might give a more efficient drive than an engine. Hybrid operation is scrutinised and the electrical losses estimated. There also remains scope for improvements in engine combustion.
Copyright © by EnPress Publisher. All rights reserved.