This research paper explores the influence of first-order chemical reactions on the sustainable properties of electrically conducting magnetohydrodynamic (MHD) fluids in a vertical channel with the unique characteristics of Jeffrey fluid flow. The mathematical model of MHD flow with Jeffrey fluid and chemical reaction incorporates the impacts of viscous dissipation, Joule heating, and a non-Newtonian fluid model with viscoelastic properties in the flow regions. The governing equations of the flow field were solved using the finite difference method, and the impacts of flow parameters on the flow characteristics were discussed numerically using a graphical representation. It’s revealed that increasing the Jeffrey parameter results in a decline in the velocity field profiles. Also, species concentration field profiles decline with higher values of the destruction chemical reaction parameter. The findings of this study have significant implications for various engineering applications, including energy generation, aerospace engineering, and material processing. Additionally, the inclusion of Jeffrey’s fluid flow introduces a viscoelastic component, enhancing the complexity of the fluid dynamics.
Total factor productivity (TFP) is essential for disentangling the determinants of economic growth, productivity, and the standard of living. Understanding the variations in TFP, however, is greatly challenging because of the many assumptions that comprise the theoretical growth framework. In this paper, we aim to explore the determinants of TFP growth for countries at different stages of information and communication technology (ICT) development. To address the endogenous nature of the associated growth variables, we implement a three-stage-least (3SLS) square panel regression to improve the efficiency and asymptomatic accuracy of the estimators. We find that transmission channels, such as financial openness and trade globalization, have contributed substantially to growth in both advanced and developing countries. However, we also discover that greater financial openness can undermine a country’s TFP growth if the financial system is not sufficiently developed. When time horizons are decomposed into pre-ICT development and post-ICT development periods, a significant crowding-out effect is observed between ICT investment and financial openness in the pre-period, implying that the allocation of resources is critical for countries in the developing stage. Trade and finance policies that are adopted by advanced and developed countries might not be ideal for underdeveloped countries. Discretion in choosing adequate policies regarding financial integration and trade liberalization is advised for these emerging countries.
Subcutaneous (SC) drug delivery is one of the best routes of drug administration to patients over intravenous (IV) administration due to the ease of application and patient acceptance. The main limitation of using the SC route is administering larger volumes of drug, greater than 3–5 mL for therapeutic dosages. Wearable injectors on body devices are an attractive option for larger-volume drug delivery to patients. Thus, the need for a self-administration strategy at home is growing faster and is required for the next level of time-dependent and high-volume drug delivery. The advances in low-cost, connected on-body delivery systems hold great opportunity for novel ways of delivering home-based drug therapy in the future.
Different color-promoting treatments were tested on table grape cv. “Flame Seedlees” to evaluate changes on flavonoids such as anthocyanins and the residual ethylene produced. Treatments were spray-applied at the onset of veraison. The control was Ethrel at 250 ppm (ETH), Salicylic Acid at 100 ppm (AS), Melatonin at 25 ppm (MEL) and 1:1 mixtures of ETH+AS, ETH+MEL and AS+MEL. The trials were conducted in triplicate after harvest, measuring Total Soluble Solids (% TSS), total acidity (% tartaric acid), pH, residual ethylene (ppm) and anthocyanin content (mg∙cm-2). It was found that treatments ETH, AS, MEL and ETH+AS reached 16% TSS, standing out with lower values ETH +MEL (14.27%) and AS+MEL (15.17%) (p ≤ 0.05). ETH reached 0.83 ppm of residual ethylene, while a sum effect was appreciated in ETH+AS (0.5 ppm) and ETH+MEL (0.35 ppm), but not beneficial as it did not reflect quality characteristics. Only differences (p ≤ 0.05) in anthocyanin content were recorded between ETH (0.019 mg∙cm-2) and AS+MEL (0.003 mg∙cm-2). The subjective color of the grape bunches in the field made it possible to relate it to the objective results of the analyses performed. This research provides commercially important information on the substitution of Ethrel by natural compounds such as AS and MEL, as they show similar effects on the quality of “Flame Seedless” table grapes. In addition, these compounds do not have an ethylene residual greater than 0.2 mg/kg.
Soil salinity is a major abiotic stress that drastically hinders plant growth and development, resulting in lower crop yields and productivity. As one of the most consumed vegetables worldwide, tomato (Solanum lycropersicum L.) plays a key role in the human diet. The current study aimed to explore the differential tolerance level of two tomato varieties (Rio Grande and Agata) to salt stress. To this end, various growth, physiological and biochemical attributes were assessed after two weeks of 100 mM NaCl treatment. Obtained findings indicated that, although the effects of salt stress included noticeable reductions in shoots’ and roots’ dry weights and relative growth rate as well as total leaf area, for the both cultivars, Rio Grande performed better compared to Agata variety. Furthermore, despite the exposure to salt stress, Rio Grande was able to maintain an adequate tissue hydration and a high leaf mass per area (LMA) through the accumulation of proline. However, relative water content, LMA and proline content were noticeably decreased for Agata cultivar. Likewise, total leaf chlorophyll, soluble proteins and total carbohydrates were significantly decreased; whereas, malondialdehyde was significantly accumulated in response to salt stress for the both cultivars. Moreover, such negative effects were remarkably more pronounced for Agata relative to Rio Grande cultivar. Overall, the current study provided evidence that, at the early growth stage, Rio Grande is more tolerant to salt stress than Agata variety. Therefore, Rio Grande variety may constitute a good candidate for inclusion in tomato breeding programs for salt-tolerance and is highly recommended for tomato growers, particularly in salt-affected fields.
Copyright © by EnPress Publisher. All rights reserved.