In the domains of geological study, natural resource exploitation, geological hazards, sustainable development, and environmental management, lithological mapping holds significant importance. Conventional approaches to lithological mapping sometimes entail considerable effort and difficulties, especially in geographically isolated or inaccessible regions. Incorporating geological surveys and satellite data is a powerful approach that can be effectively employed for lithological mapping. During this process, contemporary RS-enhancing methodologies demonstrate a remarkable proficiency in identifying complex patterns and attributes within the data, hence facilitating the classification of diverse lithological entities. The primary objective of this study is to ascertain the lithological units present in the western section of the Sohag region. This objective will be achieved by integrating Landsat ETM+ satellite imagery and field observations. To achieve our objectives, we employed many methodologies, including the true and false color composition (FCC&TCC), the minimal noise fraction (MNF), principal component analysis (PCA), decoration stretch (DS), and independent component analysis (ICA). Our findings from the field investigation and the data presented offer compelling evidence that the distinct lithological units can be effectively distinguished. A recently introduced geology map has been incorporated within the research area. The sequence of formations depicted in this map is as follows: Thebes, Drunka, Katkut, Abu Retag, Issawia, Armant, Qena, Abbassia, and Dandara. Implementing this integrated technique enhances our comprehension of geological units and their impacts on urban development in the area. Based on the new geologic map of the study area, geologists can improve urban development in the regions by detecting building materials “aggregates”. This underscores the significance and potential of our research in the context of urban development.
This study examines the spatial distribution of consumption competitiveness and carrying capacity across regions, exploring their interrelationship and implications for sustainable regional development. An evaluation index system is constructed for both consumption competitiveness and carrying capacity using a range of economic, social, and environmental indicators. We apply this framework to regional data in China and analyze the resultant spatial patterns. The findings reveal significant regional disparities: areas with strong consumption competitiveness are often concentrated in economically developed regions, while high carrying capacity is notable in less populated or resource-rich areas. Notably, a mismatch emerges in some regions—high consumer demand is not always supported by adequate carrying capacity, and vice versa. These disparities highlight potential sustainability challenges and opportunities. In the discussion, we address reasons behind the spatial mismatch and propose policy implications to better align consumer market growth with regional resource and environmental capacity. The paper concludes that integrating consumption-driven growth strategies with carrying capacity considerations is essential for balanced and sustainable regional development.
Artificial intelligence (AI) has rapidly evolved, transforming industries and addressing societal challenges across sectors such as healthcare and education. This study provides a state-of-the-art overview of AI research up to 2023 through a bibliometric analysis of the 50 most influential papers, identified using Scopus citation metrics. The selected works, averaging 74 citations each, encompass original research, reviews, and editorials, demonstrating a diversity of impactful contributions. Over 300 contributing authors and significant international collaboration highlight AI’s global and multidisciplinary nature. Our analysis reveals that research is concentrated in core journals, as described by Bradford’s Law, with leading contributions from institutions in the United States, China, Canada, the United Kingdom, and Australia. Trends in authorship underscore the growing role of generative AI systems in advancing knowledge dissemination. The findings illustrate AI’s transformative potential in practical applications, such as enabling early disease detection and precision medicine in healthcare and fostering adaptive learning systems and accessibility in education. By examining the dynamics of collaboration, geographic productivity, and institutional influence, this study sheds light on the innovation drivers shaping the AI field. The results emphasize the need for responsible AI development to maximize societal benefits and mitigate risks. This research provides an evidence-based understanding of AI’s progress and sets the stage for future advancements. It aims to inform stakeholders and contribute to the ongoing scientific discourse, offering insights into AI’s impact at a time of unprecedented global interest and investment.
The process of digitalization within the realm of tourism is not merely a trend but rather a significant catalyst that is rapidly propelling the comprehensive transformation of the tourism industry into a new era of technological advancement. This intricate process fundamentally involves the seamless integration and application of cutting-edge digital technologies across various tourism-related activities and services. The advent of innovative solutions that harness the immense capabilities of artificial intelligence, the analytical power of big data, the security features of blockchain, and the interconnectedness provided by the Internet of Things primarily serves to enhance the overall quality of services offered, optimize pricing strategies to align with market demands, and improve risk management protocols within the industry. This paper methods uses 100 Scopus indexed papers about Smart Tourism Development in Kazakhstan. It is imperative to underscore the fact that the ongoing digitalization process, while offering numerous advantages, simultaneously imposes rigorous new requirements concerning the qualifications and competencies of staff members, as well as the paramount importance of data security measures and the protection of consumer rights in the digital environment. The effective management of this digital transformation necessitates a holistic and integrated approach that encompasses not only the development of robust infrastructure but also the enhancement of digital literacy among employees and the establishment of a dynamic and innovative ecosystem that encourages creativity and adaptability.
Dredging and reclamation operations are pivotal aspects of coastal engineering and land development. Within these tasks lie potential hazards for personnel operating dredging machinery and working within reclamation zones. Due to the specialized nature of the work environment, which deviates from conventional workplace settings, the risk of workplace accidents is significantly heightened. The aim of this study is to conduct a comprehensive risk analysis of the safety aspects related to dredging and reclamation activities, with the goal of enhancing safety and minimizing the frequency and severity of potential dangers. This research comprises a thorough risk analysis, integrating meticulous hazard identification from sample projects and literature reviews. It involves risk assessment by gathering insights from experts with direct working experience and aims to assess potential risks. The study focuses on defining effective risk management strategies, exemplified through a case study of a nearshore construction project in Thailand. The study identified numerous high and very high-risk factors in the assessment and analysis of occupational safety in dredging and reclamation work. Consequently, a targeted response was implemented to control and mitigate these risks to an acceptable level. The outcome of this study will provide a significant contribution to the advancement of guidelines and best practices for improving the safety of dredging and reclamation operations.
The introduction of artificial intelligence (AI) marks the beginning of a revolutionary period for the global economic environments, particularly in the developing economies of Africa. This concept paper explores the various ways in which AI can stimulate economic growth and innovation in developing markets, despite the challenges they face. By examining examples like VetAfrica, we investigate how AI-powered applications are transforming conventional business models and improving access to financial resources. This highlights the potential of AI in overcoming obstacles such as inefficient procedures and restricted availability of capital. Although AI shows potential, its implementation in these areas faces obstacles such as insufficient digital infrastructure, limited data availability, and a lack of necessary skills. There is a strong focus on the need for a balanced integration of AI, which involves aligning technological progress with ethical considerations and economic inclusivity. This paper focuses on clarifying the capabilities of AI in addressing economic disparities, improving productivity, and promoting sustainable development. It also aims to address the challenges associated with digital infrastructure, regulatory frameworks, and workforce transformation. The methodology involves a comprehensive review of relevant theories, literature, and policy documents, complemented by comparative analysis across South Africa, Nigeria, and Mauritius to illustrate transformative strategies in AI adoption. We propose strategic recommendations to effectively and ethically utilize the potential of AI, by advocating for substantial investments in digital infrastructure, education, and legal frameworks. This will enable Africa to fully benefit from the transformative impact of AI on its economic landscape. This discourse seeks to offer valuable insights for policymakers, entrepreneurs, and investors, emphasizing innovative AI applications for business growth and financing, thereby promoting economic empowerment in developing economies.
Copyright © by EnPress Publisher. All rights reserved.