English writing is an important output skill cultivated in college English courses. And in the age of informationization, college English writing teaching relies on the support of information technology. In order to cope with the solution of this dilemma, Production-Oriented Approach(POA) proposes Teacher-Student Collaborative Assessment (TSCA), which creates a new form of assessment. Through TSCA, teachers can not only alleviate the heavy teaching load, but also fully tap the network resources to efficiently use students' time before, during and after class to maximize and optimize the teaching effect. In this paper, the teaching concept of TSCA is used to conduct writing teaching experiments, to study and analyze the writing ability of students who write effectively, so as to provide insights for the practice of English writing teaching.
This study used quantitative methods to examine the correlation between adaptive learning technology and cognitive flexibility in kids receiving special education. The study included a cohort of 120 kids, ages 8–12, who were diagnosed with particular learning difficulties, ADHD, or autism spectrum disorder. Cognitive flexibility was evaluated using the Wisconsin Card Sorting Test (WCST), while the utilization of adaptive learning technologies was quantified using self–report questionnaires. The data was analyzed using several statistical methods, such as independent samples t-tests, regression, Pearson correlation coefficients, ANOVA, and ANCOVA. The findings revealed a noteworthy and favorable correlation between the utilization of adaptive technology and the scores of cognitive flexibilities. This correlation remained significant even after accounting for demographic characteristics. Moreover, it was shown that the diagnostic status had a moderating effect on the correlation between the utilization of adaptive technology and cognitive flexibility. The results emphasize the capacity of adaptive learning technologies to improve cognitive flexibility abilities in kids with special needs, offering significant knowledge for educators, legislators, and technology developers.
This article explores a method for evaluating the achievement of learning effectiveness based on virtual reality technology. The research analyzed the design and construction of a virtual learning environment, data collection of learner behavior, data analysis and evaluation methods, evaluation indicators and personalized feedback, as well as a case study of a virtual learning evaluation system. By using virtual reality technology to create an immersive learning environment, learners can gain an immersive learning experience, and evaluators can accurately record learners' behavior and performance. The learning effectiveness evaluation method based on virtual reality technology can improve learning effectiveness and teaching quality, promote educational innovation and development. These research results are of great significance for the evaluation of virtual learning effectiveness and personalized teaching in the field of education.
Students from different cultures possess varying levels of skills in learning, remembering, and understanding concepts. Some terms and their explanations may seem easy for one group of students but difficult for another. Therefore, delivering educational content that aligns with student’s learning capabilities is a challenging task based on cultural orientations. This study addresses the learning challenges by developing a Thesaurus Glossary E-learning (TGE) framework method. This study introduces the TGE method which is a multi-language tool with visual associations that adapts to students’ capabilities. It also examines cultural differences and native languages, particularly aiding Arab Native to visualize appropriate terms (thesaurus) and their explanations (glossary) based on students’ learning capabilities. TGE learns from students’ term selection behavior and displays terms at a simple or advanced level that matches their learning ability. Additionally, TGE demonstrated its effectiveness as an e-learning tool, accessible to all students anytime and anywhere. The study analyzed 314 records related to student performance, out of which 114 students were surveyed to evaluate the effectiveness of the TGE method. This work presents TGE as a novel e-learning tool designed to enhance conceptual thinking within the context of modern educational practices during the digital transformation. TGE is based on artificial intelligence algorithms and associative rules that simulate the human brain, establishing logical connections between related key terms and sketching associations among diverse facets of a situation. An experiment was conducted at a private university in the Sultanate of Oman to assess the effectiveness of the proposed TGE tool. TGE was integrated with selected subjects in information systems and used by the students as a resource for e-learning methods and materials. The results show that 85% of students who used TGE improved their performance by 19%. We believe this work could establish a new smart e-learning teaching method and attract modern and digital universities to enhance student learning outcomes linked with conceptual thinking.
Photovoltaic systems have shown significant attention in energy systems due to the recent machine learning approach to addressing photovoltaic technical failures and energy crises. A precise power production analysis is utilized for failure identification and detection. Therefore, detecting faults in photovoltaic systems produces a considerable challenge, as it needs to determine the fault type and location rapidly and economically while ensuring continuous system operation. Thus, applying an effective fault detection system becomes necessary to moderate damages caused by faulty photovoltaic devices and protect the system against possible losses. The contribution of this study is in two folds: firstly, the paper presents several categories of photovoltaic systems faults in literature, including line-to-line, degradation, partial shading effect, open/close circuits and bypass diode faults and explores fault discovery approaches with specific importance on detecting intricate faults earlier unexplored to address this issue; secondly, VOSviewer software is presented to assess and review the utilization of machine learning within the solar photovoltaic system sector. To achieve the aims, 2258 articles retrieved from Scopus, Google Scholar, and ScienceDirect were examined across different machine learning and energy-related keywords from 1990 to the most recent research papers on 14 January 2025. The results emphasise the efficiency of the established methods in attaining fault detection with a high accuracy of over 98%. It is also observed that considering their effortlessness and performance accuracy, artificial neural networks are the most promising technique in finding a central photovoltaic system fault detection. In this regard, an extensive application of machine learning to solar photovoltaic systems could thus clinch a quicker route through sustainable energy production.
Copyright © by EnPress Publisher. All rights reserved.