One functional class is described in terms of one-sided modulus of continuity and the modulus of positive (negative) variation on which there
is a uniform convergence of the truncated cardinal Whittaker functions.
Despite the efforts of public institutions and government spending, progress on the SDGs is mixed at the midpoint of the 2030 timeframe-some targets are off track and some have even regressed. ICT-related indicators, on the other hand, stand out for their strong progress. The author notes this progress, but questions its relationship to the implementation of the 2030 Agenda. He argues that the growth in internet and mobile network penetration is due to the economic characteristics of communications development. The objectives of the article are to review the impact of the ICT sector on economic growth, to consider the role of government spending in the development of this sector in the context of fostering the achievement of the Sustainable Development Goals, and to identify the prerequisites for significant progress towards SDG targets in communications. Achievement of these objectives will make it possible to determine whether this progress is a consequence of targeted efforts to achieve the SDGs, or whether, in accordance with the author’s hypothesis, it is based on the specifics of the ICT sector’s development, allowing for the accelerated spread of mobile communications and the Internet, which is reflected in the SDG indicators.
With the rising global consumer demand for green and healthy food, the tea industry is facing unprecedented competitive pressure. Therefore, how to build tea enterprises with sustainable competitiveness has become a key issue facing the industry. This paper firstly reviews the concept of traceability systems and their evolution and, based on the theory of enterprise competitive advantage, explores the influence mechanism of traceability as a strategic resource on the long-term competitiveness of tea enterprises; secondly, it analyzes the multi-dimensional role of traceability on enterprise competitiveness from five aspects, namely, quality and safety control and guarantee, brand image shaping and trust construction, market dynamics response and consumer feedback, risk response and product recall, as well as technological innovation and efficiency enhancement; finally, combined with the above analysis, this paper constructs a theoretical framework for the competitiveness of tea enterprises, integrates the impact of traceability in different dimensions, and proposes a multi-level competitiveness enhancement model. Through this framework, tea enterprises can more comprehensively understand and grasp the close relationship between traceability and the long-term competitive advantage of enterprises and then make strategic adjustments according to their own actual situation so as to realize sustainable competitiveness enhancement in the future market competition.
The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
This study aims to: (1) analyze the need for digital marketing capabilities in Thai MSME; (2) develop an online digital marketing course; and (3) enhance Thai MSME’s digital marketing capabilities, particularly in Thailand’s manufacturing sectors. The survey was conducted using questionnaires distributed to a sample group of 400 digital marketing staff, executives, or business owners, complemented by in-depth interviews with marketing experts, business managers, and owners, totaling 10 participants. The research findings reveal a significant demand for digital marketing skills among MSME entrepreneurs in the manufacturing sector. The top three skills identified as most crucial for enhancement are: (1) communication and marketing information presentation skills; (2) brand building and public relations; and (3) video marketing execution. The study further revealed that the design of the digital marketing course, along with the developed online learning platform, attracted and successfully enrolled 104 MSMEs who participated in the online program. The pre- and post-training assessment results demonstrated a statistically significant difference in test scores, with a mean post-training score of 16.10 ( Mean = 16.10, S.D. = 1.396), representing a notable increase from the pre-training mean score of 6.47 ( Mean = 6.47, S.D. = 3.634) at the 0.05 significance level. Furthermore, the results of the follow-up evaluation on the application of acquired knowledge revealed that the overall level of knowledge and skills application is at its highest, with an average score of 4.64. This indicates that the developed course and online learning platform effectively enhance learners’ knowledge.
From the perspective of the corporate life cycle, this study investigates the transmission mechanism of ‘technological innovation-financing constraints-carbon emission reduction’ in energy companies using panel data and mediating models, focusing on listed energy companies from 2014 to 2020. It explores the stage characteristics of this mechanism during different life cycle phases and conducts heterogeneity tests across industries and regions. The results reveal that technological innovation positively influences carbon emission reduction in energy enterprises, demonstrating significant life cycle stage characteristics, specifically more pronounced in mature companies than in growing or declining companies. Financing constraints play a mediating role between technological innovation and carbon reduction, but this is only effective during the growth and maturity stages. Further research shows that the impact of technological innovation on carbon emission reduction and the mediating role of financing constraints exhibit heterogeneity across different stages of the life cycle, industries, and regions. The conclusions of this paper provide references for energy companies in planning rational emission reduction strategies and for government departments in policy-making.
Copyright © by EnPress Publisher. All rights reserved.