Cassava’s adaptability to different agroecological conditions, high yield, as well as its ability to thrive under harsh climatic conditions, makes it an essential food security crop. In South Africa, the cassava value chain is currently uncoordinated and underdeveloped, with a couple of smallholder farmers growing the crop for household consumption and as a source of income. Other farmers regard it as a secondary crop and hardly any producers grow it for industrial purposes. Hence, this study sought to analyze the determinants of household participation in the cassava value chain in South Africa. The study employed the multivariate probit model to analyze the determinants of household participation in the cassava value chain in South Africa, using a primary dataset collected through a simple sample method from smallholder farmers in KwaZulu-Natal, Mpumalanga, and Limpopo provinces. Results show that livestock ownership has a positive and significant effect on the likelihood of farmers participating in the value chain by growing cassava for household food consumption. Also, findings reveal that hiring labour in cassava production and an increase in the yield during the previous season increases the probability of farmers’ interest in selling cassava tubers along the value chain. Hence, the positive and statistically significant influence of hiring labour during cassava production in driving the farmers’ interest in selling cassava tubers and cuttings implies that the development of the cassava value chain presents great opportunities for creating jobs (employment) in the country. Also, policy interventions that ensure land tenure security and empower farmers to increase their cassava yields are bound to encourage further participation in the value chain with an interest in selling fresh tubers, among other derived products to generate income. Lastly, programmes that empower and encourage youth participation in the cassava value chain can increase the number of farmers interested in selling cassava products.
The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
Copyright © by EnPress Publisher. All rights reserved.