In recent times, there has been a surge of interest in the transformative potential of artificial intelligence (AI), particularly within the realm of online advertising. This research focuses on the critical examination of AI’s role in enhancing customer experience (CX) across diverse business applications. The aim is to identify key themes, assess the impact of AI-powered CX initiatives, and highlight directions for future research. Employing a systematic and comprehensive approach, the study analyzes academic publications, industry reports, and case studies to extract theoretical frameworks, empirical findings, and practical insights. The findings underscore a significant transformation catalyzed by AI integration into Customer Relationship Management (CRM). AI enables personalized interactions, fortifies customer engagement through interactive agents, provides data-driven insights, and empowers informed decision-making throughout the customer journey. Four central themes emerge: personalized service, enhanced engagement, data-driven strategy, and intelligent decision-making. However, challenges such as data privacy concerns, ethical considerations, and potential negative experiences with poorly implemented AI persist. This article contributes significantly to the discourse on AI in CRM by synthesizing the current state, exploring key themes, and suggesting research avenues. It advocates for responsible AI implementation, emphasizing ethical considerations and guiding organizations in navigating opportunities and challenges.
Malaria is a mosquito-borne infectious disease that affects humans and poses a severe public health problem. Nigeria has the highest number of global cases. Geospatial technology has been widely used to study the risks and factors associated with malaria hazards. The present study is conducted in Ibadan, Oyo State, Nigeria. The objective of this study is to map out areas that are at high risk of the prevalence of malaria by considering a good number of factors as criteria that determine the spread of malaria within Ibadan using open-source and Landsat remote sensing data and further analysis in GIS-based multi-criteria evaluation (MCE). This study considered factors like climate, environmental, socio-economic, and proximity to health centers as criteria for mapping malaria risk. The MCE used a weighted overlay of the factors to produce an element at-risk map, a malaria hazard map, and a vulnerability map. These maps were overlaid to produce the final malaria risk map, which showed that 72% of Ibadan has a risk of malaria prevalence. Identification and delineation of risk areas in Ibadan would help policymakers and decision-makers mitigate the hazards and improve the health status of the state.
There are several methods in the literature to find the fuzzy optimal solution of fully fuzzy linear programming (FFLP) problems. However, in all these methods, it is assumed that the product of two trapezoidal (triangular) fuzzy numbers will also be a trapezoidal (triangular) fuzzy number. Fan et al. (“Generalized fuzzy linear programming for decision making under uncertainty: Feasibility of fuzzy solutions and solving approach”, Information Sciences, Vol. 241, pp. 12–27, 2013) proposed a method for finding the fuzzy optimal solution of FFLP problems without considering this assumption. In this paper, it is shown that the method proposed by Fan et al. (2013) suffer from errors and to overcome these errors, a new method (named as Mehar method) is proposed for solving FFLP problems by modifying the method proposed by Fan et al. (2013) . To illustrate the proposed method, some numerical problems are solved.
Copyright © by EnPress Publisher. All rights reserved.