Wikipedia. Ibadan. Available online: https://en.wikipedia.org/wiki/Ibadan (accessed on 30 May 2023).
World Health Organization. World malaria report 2005. Available online: https://www.who.int/publications/i/item/9241593199 (accessed on 21 May 2023).
Walter K, John CC. Malaria. JAMA 2022; 327(6): 597. doi: 10.1001/jama.2021.21468
Caraballo H, King K. Emergency department management of mosquito-borne illness: Malaria, dengue, and west Nile virus. Emergency Medicine Practice 2014; 16(5): 1–23.
Centre for Disease Control and Prevention. Malaria’s impact worldwide. Available online: https://www.cdc.gov/malaria/malaria_worldwide/impact.html (accessed on 21 May 2023).
World Health Organization. World malaria report 2021. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed on 21 May 2023).
Okunlola OA, Oyeyemi OT. Spatio-temporal analysis of the association between the incidence of malaria and environmental predictors of malaria transmission in Nigeria. Scientific Reports 2019; 9(1): 17500. doi: 10.1038/s41598-019-53814-x
Awosolu OB, Yahaya ZS, Haziqah MTF, et al. A cross-sectional study of the prevalence, density, and risk factors associated with malaria transmission in urban communities of Ibadan, southwestern Nigeria. Heliyon 2021; 7(1): e05975. doi: 10.1016/j.heliyon.2021.e05975
Wimberly MC, de Beurs KM, Loboda TV, Pan WK. Satellite observations and malaria: New opportunities for research and applications. Trends Parasitol 2021; 37(6): 525–537. doi: 10.1016/j.pt.2021.03.003
Kazansky Y, Wood D, Sutherlun J. The current and potential role of satellite remote sensing in the campaign against malaria. Acta Astronaut 2016; 121: 292–305. doi: 10.1016/j.actaastro.2015.09.021
Parselia E, Kontoes C, Tsouni A, et al. Satellite earth observation data in epidemiological modeling of malaria, dengue and west Nile virus: A scoping review. Remote Sensing 2019; 11(16): 1862. doi: 10.3390/rs11161862
Moss WJ, Hamapumbu H, Kobayashi T, et al. Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: A cross-sectional and longitudinal community survey. Malaria Journal 2011; 10(1): 163. doi: 10.1186/1475-2875-10-163
Midekisa A, Senay G, Henebry GM, et al. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malaria Journal 2012; 11(1): 165. doi: 10.1186/1475-2875-11-165
Ebhuoma O, Gebreslasie M. Remote sensing-driven climatic/environmental variables for modeling malaria transmission in sub-saharan Africa. International Journal of Environmental Research and Public Health 2016; 13(6): 584. doi: 10.3390/ijerph13060584
Endo N, Eltahir EAB. Increased risk of malaria transmission with warming temperature in the Ethiopian highlands. Environmental Research Letters 2020; 15: 054006. doi: 10.1088/1748-9326/ab7520
Ahmad F, Goparaju L, Qayum A. Studying malaria epidemic for vulnerability zones: Multi-criteria approach of geospatial tools. Journal of Geoscience and Environment Protection 2017; 5(5): 30–53. doi: 10.4236/gep.2017.55003
Ahmed A. GIS and remote sensing for malaria risk mapping, Ethiopia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives 2014; 40(8): 155–161. doi: 10.5194/isprsarchives-XL-8-155-2014
Alemayehu A. Biology and epidemiology of Plasmodium falciparum and Plasmodium vivax gametocyte carriage: Implication for malaria control and elimination. Parasite Epidemiol Control 2023; 21: e00295. doi: 10.1016/j.parepi. 2023.e00295
Khanam S. Prevalence and epidemiology of malaria in Nigeria: A review. International Journal of Research in Pharmacy and Biosciences 2017; 4(8): 10–12.
Akinbobola A, Ikiroma IA. Determining malaria hotspot using climatic variables and geospatial technique in central urban area of Ibadan, southwest, Nigeria. Journal of Climatol Weather Forecasting 2018; 6: 225. doi: 10.4172/2332-2594.1000225
Wimberly MC, Nekorchuk DM, Kankanala RR. Cloud-based applications for accessing satellite earth observations to support malaria early warning. Scientific Data 2022; 9: 208. doi: 10.1038/s41597-022-01337-y
Zhao X, Thanapongtharm W, Lawawirojwong S, et al. Malaria risk map using spatial multi-criteria decision analysis along Yunnan border during the pre-elimination period. American Journal of Tropical Medicine and Hygiene 2020; 103(2): 793–809. doi: 10.4269/ajtmh.19-0854
Oyo state news. Available online: https://oyoaffairs.net/category/news/2019 (accessed on 21 May 2023).
Patz JA, Olson SH. Malaria risk and temperature: Influences from global climate change and local land use practices. Proceedings of the National Academy of Sciences 2006; 103(15): 5635–5636. doi: 10.1073/pnas.0601493103
Ugwu CLJ, Zewotir T. Evaluating the effects of climate and environmental factors on under-5 children malaria spatial distribution using generalized additive models (GAMs). Journal of Epidemiol Glob Health 2020; 10(4): 304–314. doi: 10.2991/jegh.k.200814.001
Ra PK, Nathawat MS, Onagh M. Application of multiple linear regression model through GIS and remote sensing for malaria mapping in Varanasi District, India. Health Science Journal 2012; 6(4): 731–749.
Kaufmann C, Briegel H. Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. Journal of Vector Ecology 2004; 29(1): 140–153.
World Health Organization. Vector-borne diseases. Available online: www.who.int (accessed on 21 May 2023).
Chikodzi D. Spatial modelling of malaria risk zones using environmental, anthropogenic variables and geographical information systems techniques. Journal of Geosciences and Geomatics 2013; 1: 8–14. doi: 10.12691/jgg-1-1-2
Shook G. An assessment of disaster risk and its management in Thailand. Disasters 1997; 21(1): 77–88. doi: 10.1111/1467-7717.00045
Greene R, Devillers R, Luther JE, Eddy BG. GIs‐based multiple‐criteria decision analysis. Geography Compass 2011; 5(6): 412–432. doi: 10.1111/j.1749-8198.2011.00431.x
GIS People. Multi-criteria analysis. Available online: https://www.gispeople.com.au/geospatial-consulting/multi-criteria-analysis/ (accessed on 21 May 2023).
Solanke OO, Taiwo AI, Oyewole O. Modeling the effects of climate variability on malaria prevalence. LAUTECH Journal of Engineering and Technology 2022; 16(2): 137–144.
Ekpa DE, Salubi EA, Olusola JA, Akintade D. Spatio-temporal analysis of environmental and climatic factors impacts on malaria morbidity in Ondo State, Nigeria. Heliyon 2023; 9(3): e14005. doi: 10.1016/j.heliyon.2023.e14005
Santos-Vega M, Bouma MJ, Kohli V, Pascual M. Population density, climate variables, and poverty synergistically structure spatial risk in urban malaria in India. PLoS Neglected Tropical Diseases 2016; 10(12): e0005155. doi: 10.1371/journal.pntd.0005155
Gebre SL, Temam N, Regassa A. Spatial analysis and mapping of malaria risk areas using multi-criteria decision making in Didessa district, south west Ethiopia. Cogent Environmental Science 2020; 6(1): 1860451. doi: 10.1080/23311843.2020.1860451
UN research ranks Ibadan as 2nd fastest growing city in 2022. Available online: https://oyoaffairs.net/un-research-ranks-ibadan-as-2nd-fastest-growing-city-in-2022/ (accessed on 21 May 2023).
Wilson ML, Krogstad DJ, Arinaitwe E, et al. Urban malaria: Understanding its epidemiology, ecology, and transmission across seven diverse ICEMR network sites. American Journal of Tropical Medicine and Hygiene 2015; 93: 110–123. doi: 10.4269/ajtmh.14-0834
Toh KB, Millar J, Psychas P, et al. Guiding placement of health facilities using multiple malaria criteria and an interactive tool. Malaria Journal 2021; 20: 455. doi: 10.1186/s12936-021-03991-w
How weighted overlay works. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-weighted-overlay-works.html (accessed on 21 May 2023).