This study conducts a systematic literature review to analyze the integration of artificial intelligence (AI) within business excellence frameworks. An analysis of the findings in the reviewed articles yielded five major themes: AI technologies and intelligent systems; impact of AI on business operations, strategies, and models; AI-driven decision-making in infrastructure and policy contexts; new forms of innovation and competitiveness; and the impact of AI on organizational performance and value creation in infrastructure projects. The findings provide a comprehensive understanding of how AI can be integrated into organizational excellence emerged frameworks to address challenges in infrastructure governance, and sustainable development. Key questions addressed include: how AI affects consumer behavior and marketing strategies. What AI’s capabilities for businesses, especially marketing and digital strategies? How can organizations address the drivers and barriers to help make better use of AI in these business operations? Should organizations even do anything with these insights? These questions and more will be tackled throughout this discussion. This paper attempts to derive a comprehensive conceptual framework from several fields of human resources, operational excellence, and digital transformation, that can help guide organizations and policymakers in embedding AI into infrastructure and development initiatives. This framework will help practitioners navigate the complexities of AI integration, ensuring profitability and sustainable growth in a highly competitive landscape. By bridging the gap between AI technologies and development-related policy initiatives, this research contributes to the advancement of infrastructure governance, public management, and sustainable development.
Urban planning is critical to managing rapid urban growth, particularly in African regions experiencing high urbanization rates. This study focuses on Bol, Lake Chad Province, a city facing significant challenges due to inadequate planning frameworks compounded by recurrent humanitarian and climate crises. It fills an empirical gap by analyzing how local planning mechanisms respond to these socio-environmental complexities, with a focus on the interplay between institutional structures, legislative frameworks, and resource allocation. The study assesses urban planning practices in Bol to identify challenges and opportunities, with the aim of improving institutional effectiveness, aligning policies with realities, and integrating climate resilience strategies. Using a qualitative methodology, it combines field surveys, stakeholder interviews, and document analysis, using SWOT (Strengths, Weaknesses, Opportunities, Threats) and PESTEL (Political, Economic, Sociocultural, Technological, Environmental, Legal) frameworks for data analysis. The findings reveal that ineffective institutions, poor inter-sectoral coordination, outdated legislative frameworks and resource constraints hamper sustainable urban development in Bol. To address these issues, the study proposes to strengthen local institutional capacities, foster stakeholder collaboration, and modernize urban planning policies through participatory approaches. The study highlights the need to integrate resilience strategies into urban settings to mitigate climate change impacts and improve governance. These measures not only address immediate challenges, but also advance urban planning theory and provide a basis for future research on adaptation strategies in crisis-prone regions. This study offers practical insights for policy makers and contributes to developing more sustainable and resilient urban planning systems in similar contexts.
This study investigated the influence of infrastructure spending, government debt, and inflation on GDP in South Africa from 1995 to 2023. Motivated by the need for sustainable growth amid fiscal and inflationary pressures, this research addresses gaps in understanding how these factors shape economic performance. The primary objective was to assess these variables’ individual and combined effects on GDP and offer policy recommendations. Using an ARDL model, the study explored long- and short-term relationships among the variables. Results indicate that infrastructure spending positively impacts GDP, promoting long-term growth, while government debt hinders GDP in both short and long runs. Moderate inflation supports growth, but excessive inflation poses risks. These findings imply the need for targeted infrastructure investments, strict debt management practices, and inflation control measures to sustain economic stability and growth. Policy recommendations include expanding public investment in productive infrastructure, implementing fiscal rules to prevent unsustainable debt levels, and maintaining inflation within a controlled range. Ultimately, these policies could help South Africa build a resilient, balanced economy that addresses both immediate growth needs and long-term stability.
Employees’ loyalty is essential for improving the organization’s performance, thus aiding sustainable economic growth. The study examines the relationship between employee loyalty, organizational performance, and economic sustainability in Malaysian organizations. The results indicate a robust positive correlation between organizational performance and employee loyalty, suggesting loyalty drives productivity, profitability, and operational efficiency. Additionally, the study highlights organizational performance as a mediator that connects loyalty to aggregate-level economic consequences, such as resilience and adaptability under volatile market conditions. The research emphasizes the role of leadership, company culture, and work environments that support cultivating loyalty. It also highlights how loyal employees can be a cornerstone of innovation and corporate social responsibility, which aligns with Malaysia’s sustainable development agenda. By addressing this, organizations are encouraged to adopt measures that can foster loyalty and ensure long-term economic sustainability, including employee engagement initiatives, talent management, and recognition systems. Research to come should investigate longitudinal dynamics, cross-cultural comparisons, and sector-specific factors to cement a better base of understanding about the impact of employee loyalty on organizational and economic outcomes.
This project analyzes the evolution of the manufacturing sector in Portugal from 2009 to 2021, focusing on the variations in the number of active companies across various subcategories, such as food, textiles, and metal product industries. The goal of this analysis is to understand the dynamics of growth and contraction within each sector, providing insights for companies to adjust their market and operational strategies. Key objectives include analyzing the overall evolution in the number of companies, identifying subcategories with notable changes, and providing a comprehensive analysis of observed trends and patterns. The study is based on data from PORDATA 2024, and the research employs temporal trend analysis, linear and quadratic regression, and the Pareto representation to identify patterns of growth and decline. By comparing annual data, the project uncovers periods of growth and decline, allowing for a deeper understanding of the sector’s dynamics. The findings also highlight variations in periods of economic crises and during the Covid-19 pandemic, and recommendations for action are presented to support businesses resilience and continuity. These results are valuable for companies within the manufacturing sectors analyzed and policy makers, guiding strategic decisions to navigate the complexities of the market dynamics and to ensuring long-term organizational sustainable success.
This paper investigates the factors influencing credit growth in Kosovo, focusing on the relationship between credit activity and key economic variables, including GDP, FDI, CPI, and interest rates. Its analysis targets loans issued to businesses and households in Kosovo, employing a VAR model integrated into a VEC model to investigate the determinants of credit growth. The findings were validated using OLS regression. Additionally, the study includes a normality test, a model stability test (Inverse Roots AR Characteristic Polynomial), a Granger causality test for short-term relationships, and variance decomposition to analyze variable shocks over time. This research demonstrates that loan growth is primarily driven by its historical values. The VEC model shows that, in the long run, economic growth in Kosovo leads to less credit growth, showing a negative link between it and GDP. Higher interest rates also reduce credit growth, showing another negative link. On the other hand, more foreign direct investment (FDI) increases credit demand, showing a positive link between credit growth and FDI. The results show that loans and inflation (CPI) are positively linked, meaning higher inflation leads to more credit growth. Similarly, more foreign direct investment (FDI) increases credit demand, showing a positive link between FDI and credit growth. In the long term, higher inflation is connected to greater credit growth. In the short term, the VAR model suggests that GDP has a small to moderate effect on loans, while FDI has a slightly negative effect. In the VAR model, interest rates have a mixed effect: one coefficient is positive and the other negative, showing a delayed negative impact on loan growth. CPI has a small and negative effect, indicating little short-term influence on credit growth. The OLS regression supports the VAR results, finding no effect of GDP on loans, a small negative effect from FDI, a strong negative effect from interest rates, and no effect from CPI. This study provides a detailed analysis and adds to the research by showing how macroeconomic factors affect credit growth in Kosovo. The findings offer useful insights for policymakers and researchers about the relationship between these factors and credit activity.
Copyright © by EnPress Publisher. All rights reserved.