This research was conducted using a survey research method to investigate the influence of Artificial Intelligence (AI) on Nigerian students’ academic performances in tertiary institutions. Nigerian tertiary institutions have an estimated population of about 2.5 million students across the universities, polytechnics, monotechnics, and colleges of education. A sample size of 509 was used. The researchers adopted an online questionnaire (Google Form) to administer questions to respondents across Nigeria to elicit responses from the respondents bordering on their awareness and the use of AI and its attendant impacts on their academic performance. Five research objectives were raised for the proper investigation of this study. From the findings of the study, the researchers found that the majority of Nigerian students use AI and that AI has positive impacts on the educational performance of Nigerian students. It was also found that Nigerian students have training on the use of AI for educational purposes and that they are more familiar with Snapchat AI and ChatGPT. Conclusively, AI is useful to students in the sense that it enhances their knowledge of their courses, improves their learning and speaking skills, and helps them to have a quick understanding of their course by way of simplifying technical aspects of their courses. The researchers therefore recommend as follows: Nigerian tertiary institutions should formally train students as well as teachers on the use of AI for academic purposes so that they can understand the ethical implications of the use of AI. Using AI for writing could be interpreted to mean examination malpractice, and this should not be condoned in the educational sector; however, at the moment, a small number of students used AI for examinations. Albeit, the appropriate use of AI should be fully integrated into Nigerian tertiary institutions’ curricula.
Nigeria’s palm oil processing industry poses significant environmental pollution risks, jeopardizing the country’s ability to meet the UN’s 17 Sustainable Development Goals (SDGs) by 2030. Traditional processing methods generate palm oil mill effluent (POME), contaminating soil and shallow wells. This study investigated water samples from five locations (Edo, Akwa-Ibom, Cross River, Delta, and Imo states) with high effluent release. While some parameters met international and national standards (WHO guidelines, ASCE, NIS, and NSDWQ) others exceeded acceptable limits, detrimental to improved water quality. Results showed, pH values within acceptable ranges (6.5–8.5), high total conductivity and salinity (800–1150 µS/cm), acceptable hardness values (200–300 mg/L), nitrite concentrations (10–45 mg/L), excessive magnesium absorption (> 50 mg/L), biochemical oxygen demand (BOD) indicating significant pollution (75–290 mg/L), total dissolved solids (TDS) exceeding safe limits in four locations, total solids (TS) exceeding allowable limits for drinking water (310–845 mg/L), water quality index (WQI) values ranged from “poor” to “very poor”. POME contamination by metals like magnesium, nitrite, chloride, and sodium compromised shallow well water quality. Correlation analysis confirmed robust results, indicating strong positive correlations between conductivity and TDS (r = 0.85, p < 0.01) and pH and total hardness (r = 0.65, p < 0.05). The study emphasizes the need for environmentally friendly palm oil processing methods to mitigate pollution, ensure safe drinking water, and achieve Nigeria’s SDGs. Implementation of sustainable practices is crucial to protect public health and the environment.
This study investigated the variability of climate parameters and food crop yields in Nigeria. Data were sourced from secondary sources and analyzed using correlation and multivariate regression. Findings revealed that pineapple was more sensitive to climate variability (76.17%), while maize and groundnut yields were more stable with low sensitivity (0.98 and 1.17%). Yields for crops like pineapple (0.31 kg/ha) were more sensitive to temperature, while maize, beans, groundnut, and vegetable yields were less sensitive to temperature with yields ranging from 0.15 kg/ha, 0.21 kg/ha, 0.18 kg/ha, and 0.12 kg/ha respectively. On the other hand, maize, beans, groundnut, and vegetable yields were more sensitive to rainfall ranging from 0.19kg/ha, 0.15kg/ha, 0.22 kg/ha, and 0.18 kg/ha respectively compared to pineapple yields which decreased with increase rainfall (−0.25 kg/ha). The results further showed that for every degree increase in temperature, maize, pineapple, and beans yields decreased by 0.48, 0.01, and 2.00 units at a 5 % level of significance, while vegetable yield decreased by 0.25 units and an effect was observed. Also, for every unit increase in rainfall, maize, pineapple, groundnut, and vegetable yields decreased by 3815.40, 404.40, 11,398.12, and 2342.32 units respectively at a 5% level, with an observed effect for maize yield. For robustness, these results were confirmed by the generalized additive and the Bayesian linear regression models. This study has been able to quantify the impact of temperature on food crop yields in the African context and employed a novel analytical approach combining the correlation matrix and multivariate linear regression to examine climate-crop yield relationships. The study contributes to the existing body of knowledge on climate-induced risks to food security in Nigeria and provides valuable insights for policymakers, farmers, government, and stakeholders to develop effective strategies to mitigate the impacts of climate change on food crop yields through the integration of climate-smart agricultural practices like agroforestry, conservation agriculture, and drought-tolerant varieties into national agricultural policies and programs and invest in climate information dissemination channels to help consider climate variability in agricultural planning and decision-making, thereby enhancing food security in the country.
The menace of road traffic accidents (RTAs) has become a major constraint to development in most developing countries because of driving behaviour. This study examines the effects of road users’ education programmes on driving behaviour toward RTA reduction in Nigeria. Data for the study were collected by random sampling of 287 respondents. The respondents comprising road safety officers and drivers were selected at six (6) zonal headquarters of the Federal Road Safety Commission. The questionnaire presented seventeen (17) statements in a 5-point Likert scale for the respondents to rank in order of importance as they have influenced driving behaviour. The data collected were analysed using exploratory factor analysis to identify the most significant effects of road user education on driving behaviour. The study found that road user education programmes have influenced driving behaviour by improving bad driving acts, maintaining good vehicle conditions, and obeying road communication signs. The finding implies that appropriate driving behaviour will reduce road traffic accidents.
In Nigeria, deforestation has led to an unimaginable loss of genetic variation within tree populations. Regrettably, little is known about the genetic variation of many important indigenous timber species in Nigeria. More so, the specific tools to evaluate the genetic diversity of these timber species are scarce. Therefore, this study developed species-specific markers for Pterygota macrocarpa using state-of-the-art equipment. Leaf samples were collected from Akure Forest Reserve, Ondo State, Nigeria. DNA isolation, quantification, PCR amplification, gel electrophoresis, post-PCR purification, and sequencing were done following a standardized protocol. The melting temperatures (TM) of the DNA fragments range from 57.5 ℃to 60.1 ℃ for primers developed from the MatK gene and 58.7 ℃ to 60.5 ℃ for primers developed from the RuBisCo gene. The characteristics of the ten primers developed are within the range appropriate for genetic diversity assessment. These species-specific primers are therefore recommended for population evaluation of Pterygota macrocarpa in Nigeria.
Road construction and maintenance are key interventions that support economic potential in the country. However, the deplorable state of some roads in Nigeria, and in Cross River and Akwa Ibom states draws research concerns. This paper seeks to examine the impact of the Niger Delta Development Commission Intervention on road construction and economic activities in Cross River and Akwa Ibom States, Nigeria. Using the Sustainable Development Framework, a survey research design was employed, gathering data from 400 respondents across both states. The chi-square statistical technique was used to test the hypothesis that the Niger Delta Development Commission Intervention has no significant impact on road construction in Akwa Ibom and Cross River States. The result of the data analysis showed the calculated value X2 = 1592 > 16.92. By this result, the null hypothesis was rejected (16.92) at 0.05 level of significance and 9 Degrees of Freedom, and the alternate was accepted. The study concludes that NDDC road projects have positively influenced economic activities and livelihoods in the states. However, it highlights the need for further improvements, particularly on the Calabar-Itu federal highway.
Copyright © by EnPress Publisher. All rights reserved.