The use of geotechnologies combined with remote sensing has become increasingly essential and important for efficiently and economically understanding land use and land cover in specific regions. The objective of this study was to observe changes in agricultural activities, particularly agriculture/livestock farming, in the North Forest Zone of Pernambuco (Mata Norte), a political-administrative region where sugarcane cultivation has historically been the backbone of the local economy. The region’s sugarcane biomass also contributes to land use and land cover observations through remote sensing techniques applied to digital satellite images, such as those from Landsat-8, which was used in this study. This study was conducted through digital image processing, allowing the calculation of the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), and the Leaf Area Index (LAI) to assess vegetation cover dynamics. The results revealed that sugarcane cultivation is the predominant agricultural and vegetation activity in Mata Norte. Livestock farming areas experienced a significant reduction over the observed decade, which, in turn, led to an increase in agricultural and forested areas. The most dynamic spatiotemporal behavior was observed in the expansion and reduction of livestock areas, a more significant change compared to sugarcane areas. Therefore, land use and land cover in this region are more closely tied to sugarcane cultivation than any other agricultural activity.
The food supply chain in South Africa faces significant challenges related to transparency, traceability, and consumer trust. As concerns about food safety, quality, and sustainability grow, there is an increasing need for innovative solutions to address these issues. Blockchain technology has emerged as a promising tool to enhance transparency and accountability across various industries, including the food sector. This study sought to explore the potential of blockchain technology in revolutionizing through promoting transparency that enable the achievement of sustainable food supply chain infrastructure in South Africa. The study found that blockchain technology used in food supply chain creates an immutable and decentralized ledger of transactions that has the capacity to provide real-time, end-to-end visibility of food products from farm to table. This increased transparency can help mitigate risks associated with food fraud, contamination, and inefficiencies in the supply chain. The study found that blockchain technology can be leveraged to enhance supply chain efficiency and trust among stakeholders. This technology used and/or applied in South Africa can reshape the agricultural sector by improving production and distribution processes. Its integration in the food supply chain infrastructure can equally improve data management and increase transparency between farmers and food suppliers.There is need for policy-makers and scholars in the fields of service delivery and food security to conduct more research in blockchain technology and its roles in creating a more transparent, efficient, and trustworthy food supply chain infractructure that address food supply problems in South Africa. The paper adopted a qualitative methodology to collect data, and document and content analysis techniques were used to interpret collected data.
Disinformation can be defined as false information deliberately initiated to cause harm to a person, social group, organization, or country. Gendered disinformation then attacks or undermines people based on gender or weaponizes gendered narratives for political, social, or economic objectives. Gendered disinformation comes in different forms, such as harmful social media posts and graphics, sexual fabrications, and other forms of conspiracy theories. It is used in various situations and at different places. This research discussed the instances of gendered disinformation and harmful online narratives that are recognizable and visible. It sheds light on the potential direct and indirect impact on youth experiences. In this study, the young participants (aged 18–30) focused on the instances of the existing online narratives of gendered discrimination from Belgium, Greece, Latvia, Spain, and Türkiye. The research provided an initial analysis of what “gendered information and harmful online narratives” look like and some recommendations from youth perspectives on countering the issues. The study concluded that there is a need for more research, further harmonization of legal frameworks, and strengthened capacity to detect gendered disinformation, propaganda, and hate speech.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
This study examines how Artificial Intelligence (AI) enhances Sharia compliance within Islamic Financial Institutions (IFIs) by improving operational efficiency, ensuring transparency, and addressing ethical and technical challenges. A quantitative survey across five Saudi regions resulted in 450 validated responses, analyzed using descriptive statistics, ANOVA, and regression models. The findings reveal that while AI significantly enhances transparency and compliance processes, its impact on operational efficiency is limited. Key barriers include high implementation costs, insufficient structured Sharia datasets, and integration complexities. Regional and professional differences further underscore the need for tailored adoption strategies. It introduces a novel framework integrating ethical governance, Sharia compliance, and operational scalability, addressing critical gaps in the literature. It offers actionable recommendations for AI adoption in Islamic finance and contributes to the global discourse on ethical AI practices. However, the Saudi-specific focus highlights regional dynamics that may limit broader applicability. Future research could extend these findings through cross-regional comparisons to validate and refine the proposed framework. By fostering transparency and ethical governance, AI integration aligns Islamic finance with socio-economic goals, enhancing stakeholder trust and financial inclusivity. The study emphasizes the need for targeted AI training, the development of structured Sharia datasets, and scalable solutions to overcome adoption challenges.
Copyright © by EnPress Publisher. All rights reserved.