The COVID-19 pandemic has fundamentally transformed the global education landscape, compelling institutions to adopt e-learning as an essential tool to sustain academic activities. This research examines the critical impact of e-learning on arts and science college students in Coimbatore, with an emphasis on its influence on their readiness for campus recruitment. Using a survey of 300 students, this study investigates their perceptions of online education, highlighting both its advantages, such as flexibility and accessibility, and its challenges, including engagement barriers and technical limitations. Data was collected through structured questionnaires and analyzed using statistical methods to draw meaningful insights. The research also explores the efficacy of online assessments in recruitment processes and assesses students’ awareness of available e-learning platforms and courses. The urgency of this study lies in addressing the pressing need to optimize digital education models as institutions globally transition toward blended learning post-pandemic. The findings underline the dual potential and limitations of e-learning, concluding with actionable recommendations to enhance its effectiveness, particularly in preparing students for competitive employment opportunities.
Credit risk assessment is one of the most important aspects of financial decision-making processes. This study presents a systematic review of the literature on the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in credit risk assessment, offering insights into methodologies, outcomes, and prevalent analysis techniques. Covering studies from diverse regions and countries, the review focuses on AI/ML-based credit risk assessment from consumer and corporate perspectives. Employing the PRISMA framework, Antecedents, Decisions, and Outcomes (ADO) framework and stringent inclusion criteria, the review analyses geographic focus, methodologies, results, and analytical techniques. It examines a wide array of datasets and approaches, from traditional statistical methods to advanced AI/ML and deep learning techniques, emphasizing their impact on improving lending practices and ensuring fairness for borrowers. The discussion section critically evaluates the contributions and limitations of existing research papers, providing novel insights and comprehensive coverage. This review highlights the international scope of research in this field, with contributions from various countries providing diverse perspectives. This systematic review enhances understanding of the evolving landscape of credit risk assessment and offers valuable insights into the application, challenges, and opportunities of AI and ML in this critical financial domain. By comparing findings with existing survey papers, this review identifies novel insights and contributions, making it a valuable resource for researchers, practitioners, and policymakers in the financial industry.
With the rapid development of artificial intelligence (AI) technology, its application in the field of auditing has gained increasing attention. This paper explores the application of AI technology in audit risk assessment and control (ARAC), aiming to improve audit efficiency and effectiveness. First, the paper introduces the basic concepts of AI technology and its application background in the auditing field. Then, it provides a detailed analysis of the specific applications of AI technology in audit risk assessment and control, including data analysis, risk prediction, automated auditing, continuous monitoring, intelligent decision support, and compliance checks. Finally, the paper discusses the challenges and opportunities of AI technology in audit risk assessment and control, as well as future research directions.
This research investigates the safety status of water transport in Lake Towuti, South Sulawesi, employing the MICMAC and MACTOR methodologies to discern the factors that affect navigation safety and the interactions among the relevant stakeholders. The MICMAC analysis reveals that the effectiveness of sustainable transportation in Lake Towuti is significantly dependent on technical elements such as vessel certification, maintenance practices, and safety monitoring, alongside robust relationships among key entities like The South Sulawesi Class II Land Transportation Management Center (BPTD), The East Luwu District Transportation Office (Dishub), and the Timampu Port Service Unit (Satpel). When implementing the MICMAC-MACTOR model, it is essential to consider the technical implications of the proposed recommendations from the perspectives of social justice, environmental sustainability, and economic feasibility. The outcomes derived from the MICMAC and MACTOR assessments in Lake Towuti provide critical insights that can be utilized in other lakes across Indonesia, especially those that exhibit deficiencies in safety measures and adherence to inland water transport safety regulations.
The article examines the issues of application and improvement of the methodology for evaluating industrial enterprises as recipients of state support within the framework of the implementation of industrial policy. The authors considered approaches to the content of industrial policy, investigated the factors influencing its efficiency, identified aspects of its imperfections that arise when applying an incomplete list of important parameters of economic development and ambiguity in the interpretation of previously applied estimates. The article presents proposals to improve the methodology for assessing potential recipients of state support based on the development of a comprehensive indicator for assessing enterprises (recipients of support), taking into account not only the classical parameters of the economic efficiency of industrial enterprises applying for state financial assistance, but also such aspects as the development of budgetary funds, belonging to priority sectors of the economy, characteristics of sustainable development and export and innovation potential. Combining the results of a comprehensive assessment of the recipient of state support with a map of the business demography of the territory allows making a decision not only about the fact of support and its efficiency, but also to predict the assessment of the life cycle of the enterprise and its subsequent development.
Copyright © by EnPress Publisher. All rights reserved.