The semiclassical boron–boron interatomic pair potential is constructed in an integral form allowing its converting into the analytical one. It is an ab initio B–B potential free of any semiempirical adjusting parameters, which would serve as an effective tool for the theoretical characterization of all-boron and boron-rich nanomaterials.
Theoretically, within the diatomic model, the relative stability of most abundant boron clusters B11, B12, and B13 with planar structures in neutral, positive and negative charged-states is studied. According to the specific (per atom) binding energy criterion, B12+ (6.49 eV) is found to be the most stable boron cluster, while B11– + B13+ (5.83 eV) neutral pair is expected to present the preferable ablation channel for boron-rich solids. Obtained results would be applicable in production of boron-clusters-based nanostructured coating materials with super-properties such as lightness, hardness, conductivity, chemical inertness, neutron-absorption, etc., making them especially effective for protection against cracking, wear, corrosion, neutron- and electromagnetic-radiations, etc.
Copyright © by EnPress Publisher. All rights reserved.