High-quality development in China requires higher vocational education, scientific and technological innovation, and sustainable economic development. The spatial distribution patterns of these factors show higher levels in the east and coastal areas compared to the west and inland regions, emphasizing the need for coupling coordination with the social economy. This study examines the impact of sustainable economic development on the coupling coordination degree using the spatial Durbin model. The results show a positive promotion and spillover effect, with regional variations. The main factors affecting the difference in coupling coordination are the amount of technology market contracts, fiscal expenditure on science and technology, patent application authorizations, tertiary industry output value, and the number of R&D institutions. According to the grey prediction model, the coupling coordination degree is expected to increase from 2022 to 2025, but achieving primary coordination may still be challenging in some areas. Therefore, strategies that utilize regional characteristics for coordinated development should be developed to improve the level of coupling coordination and create a mutually beneficial environment.
China’s graduate quality management system is designed to ensure that students possess the necessary skills, knowledge, and competencies for future success. This system is rooted in China’s ambitious educational reforms aimed at cultivating a highly skilled workforce to drive economic growth and innovation. Effective graduate quality management significantly impacts employment levels, training models, and national policy formulation. This study investigates the quality management approaches of 56 vocational institutions in Yunnan Province using a 5-level questionnaire and a quantitative research methodology. A sample of 556 individuals was selected through stratified random sampling. Exploratory factor analysis identified five primary components of the quality management model: College graduate quality (mean = 4.56, SD = 0.49), teaching quality (mean = 4.39, SD = 0.42), hardware environment (mean = 4.38, SD = 0.44), social support (mean = 4.37, SD = 0.42), and job satisfaction (mean = 4.38, SD = 0.42). College graduate quality and teaching quality were the most influential factors, while hardware environment, social support, and job satisfaction had lesser impacts.
The Primary and secondary shadow education refers to a kind of unofficial education that exists outside the traditional mainstream primary and secondary education system in China, with both commercial and educational attributes. As the primary and secondary school stage is an important key stage for further education, existing research mainly focuses on the spatial distribution of primary and secondary school basic education facilities and non-subject training, with fewer studies targeting primary and secondary school subject tutoring shadow education. With the changes in China’s education industry and the introduction of the Double Reduction Policy, there is an urgent need to conduct in-depth research on the spatial aggregation characteristics and influencing factors of Shadow Education Enterprises for primary and secondary school students. This paper takes the main urban area of Zhengzhou City as the study area, and takes primary and secondary school Shadow Education Enterprises as the research object, and applies spatial analysis methods such as kernel density, nearest-neighbor index, and geographic detector to quantitatively analyze the spatial distribution characteristics of primary and secondary school shadow education tutoring enterprises in Zhengzhou City and the factors affecting them The results show that: 1) The overall spatial pattern of primary and secondary school tutoring Shadow Education Enterprises in the main urban area of Zhengzhou City has largely formed a core-edge structural feature that spreads from the urban center to the periphery, and presents the spatial agglomeration feature of “double nuclei many times” distributed along both sides of the Beijing-Guangzhou Line. 2) The distribution of mentoring Shadow Education Enterprises in the main urban area of Zhengzhou City in relation to provincial model primary and secondary schools is significant and there is a significant difference between the distribution around secondary schools and primary schools. 3) The spatial distribution of Shadow Education Enterprises in the main urban area of Zhengzhou City is mainly influenced by factors such as the size of the school-age population, the level of commercial development, the location of school buildings and the accessibility of transport.
Copyright © by EnPress Publisher. All rights reserved.