In recent years, awareness of sustainability has increased significantly in the hospitality industry, particularly within the hotel sector, which is recognized as a major contributor to environmental degradation. In response to this challenge, hotel managers are increasingly implementing green human resource management (GHRM) practices to increase Organizational Citizenship Behavior. Considering job satisfaction, and organizational commitment as mediator. A survey was conducted with 383 employees from three- and four-star Egyptian hotels and the obtained data were analyzed using SPSS version 22 and Amos version 24. Structural equation modelling was used to analyze the data. The study revealed that GHRM practices positively impacts Organizational Citizenship Behaviors (OCB), job satisfaction and organizational commitment in addition, the study found that job satisfaction and organizational mediates the relationship between Green Human Resource Management and Organizational Citizenship Behavior. The study found a positive link between GHRM and OCB, partially mediated by job satisfaction and organizational commitment. The recommend that implementation of GHRM practices in the hotel industry can have significant positive implications.
The construction of gas plants often experiences delays caused by various factors, which can lead to significant financial and operational losses. This research aims to develop an accurate risk model to improve the schedule performance of gas plant projects. The model uses Quantitative Risk Analysis (QRA) and Monte Carlo simulation methods to identify and measure the risks that most significantly impact project schedule performance. A comprehensive literature review was conducted to identify the risk variables that may cause delays. The risk model, pre-simulation modeling, result analysis, and expert validation were all developed using a Focused Group Discussion (FGD). Primavera Risk Analysis (PRA) software was used to perform Monte Carlo simulations. The simulation output provides information on probability distribution, histograms, descriptive statistics, sensitivity analysis, and graphical results that aid in better understanding and decision-making regarding project risks. The research results show that the simulated project completion timeline after mitigation suggested an acceleration of 61–65 days compared to the findings of the baseline simulation. This demonstrates that activity-based mitigation has a major influence on improving schedule performance. This research makes a significant contribution to addressing project delay issues by introducing an innovative and effective risk model. The model empowers project teams to proactively identify, measure, and mitigate risks, thereby improving project schedule performance and delivering more successful projects.
Promoting travelling intention within social media is significant for stakeholders to grasp a new tourism market and cultivate a new model for development of tourism industry. This study aims to understand path of destination image affecting travelling intention, and to investigate the mediation role of perceived value, furthermore, to uncover the role of moderator of situational involvement. This paper conducts a survey on tourists visiting Guilin, collecting 435 questionnaires, and uses the structural equation modeling method to explore how the image of the tourism destination affects tourists’ willingness to travel. The research results indicate that cognitive image, emotional image, and projected image all have a significant positive impact on perceived value, perceived value as a significant mediator to bridge the relationship among the destination image and tourists’ travel intention. Furthermore, situational involvement plays a negative moderating role in the mediating effect of emotional value. This study endeavor will serve to enrich the understanding of perceived value theory, destination image theory, and tourism consumer behavior theory. It will also provide theoretical foundations and policy recommendations for guiding tourism consumer behavior, analyzing destination image perception, and destination marketing.
This research article examines the relationship between the level of social welfare expenditure and economic growth rates, based on unbalanced panel data from 38 OECD countries covering the period from 1985 to 2022. Four hypotheses are formulated regarding the impact of social expenditure on economic growth rates. Through multiple iterations of regression model building, employing various combinations of dependent and independent variables, and conducting tests for stationarity and causality, compelling empirical evidence was obtained on the negative influence of social welfare spending on economic growth rates. The study takes into account both government and non-governmental expenditures on social welfare, a novelty in this field. This approach allows for a detailed examination of the effects of different components on economic growth and provides a more comprehensive understanding of the relationships. The findings indicate that countries with high levels of social welfare spending experience a slowdown in economic growth rates. This is associated with increasing demands on social security systems, their growing inclusivity, and the escalating required levels of financing, which are increasingly covered by debt sources. The research highlights the need to strike a balance between social expenditures and economic growth rates and proposes a set of measures to ensure economic growth outpaces the indexing of social expenditures. The abstract underscores the relevance of the study in light of the widespread recognition of the necessity to combat inequality, poverty, and destitution, and calls on OECD countries’ governments to pay increased attention to social policy in order to achieve sustainable and balanced economic growth.
This financial modelling case study describes the development of the 3-statement financial model for a large-scale transportation infrastructure business dealing with truck (and some rail) modalities. The financial modelling challenges in this area, especially for large-scale transport infrastructure operators, lie in automatically linking the operating activity volumes with the investment volumes. The aim of the paper is to address these challenges: The proposed model has an innovative retirement/reinvestment schedule that automates the estimation of the investment needs for the Business based on the designated age-cohort matrix analysis and controlling for the maximum service ceiling for trucks as well as the possibility of truck retirements due to the reduced scope of tracking operations in the future. The investment schedule thus automated has a few calibrating parameters that help match it to the current stock of trucks/rolling stock in the fleet, making it to be a flexible tool in financial modelling for diverse transport infrastructure enterprises employing truck, bus and/or rail fleets for the carriage of bulk cargo quantifiable by weight (or fare-paying passengers) on a network of set, but modifiable, routes.
The Consumer Price Index (CPI) is a vital gauge of economic performance, reflecting fluctuations in the costs of goods, services, and other commodities essential to consumers. It is a cornerstone measure used to evaluate inflationary trends within an economy. In Saudi Arabia, forecasting the Consumer Price Index (CPI) relies on analyzing CPI data from 2013 to 2020, structured as an annual time series. Through rigorous analysis, the SARMA (0,1,0) (12,0,12) model emerges as the most suitable approach for estimating this dataset. Notably, this model stands out for its ability to accurately capture seasonal variations and autocorrelation patterns inherent in the CPI data. An advantageous feature of the chosen SARMA model is its self-sufficiency, eliminating the need for supplementary models to address outliers or disruptions in the data. Moreover, the residuals produced by the model adhere closely to the fundamental assumptions of least squares principles, underscoring the precision of the estimation process. The fitted SARMA model demonstrates stability, exhibiting minimal deviations from expected trends. This stability enhances its utility in estimating the average prices of goods and services, thus providing valuable insights for policymakers and stakeholders. Utilizing the SARMA (0,1,0) (12,0,12) model enables the projection of future values of the Consumer Price Index (CPI) in Saudi Arabia for the period from June 2020 to June 2021. The model forecasts a consistent upward trajectory in monthly CPI values, reflecting ongoing economic inflationary pressures. In summary, the findings underscore the efficacy of the SARMA model in predicting CPI trends in Saudi Arabia. This model is a valuable tool for policymakers, enabling informed decision-making in response to evolving economic dynamics and facilitating effective policies to address inflationary challenges.
Copyright © by EnPress Publisher. All rights reserved.