This work aimed to evaluate the effects of using three different substrates in the semi-hydroponic culture of lettuce (Lactuca sativa L.) using two different nutrient solutions. A first trial was performed with a nutrient solution rich in macronutrients and micronutrients suitable for lettuce culture, and a second trial with a nutrient solution with pretreated wastewater from effluents of a cheese factory. The experimental design was in randomized blocks with three repetitions and three substrates were used: perlite, coconut fiber, and expanded clay, in both trials. The following parameters were observed: number of leaves, diameter of the cabbage, fresh and dry weight of the aerial part, chlorophyll index and mineral composition of the lettuce. For the first trial, the highest result for the number of leaves (20 leaves), fresh weight (142.0 g) and dry weight (7.2 g) of the aerial part was obtained in the plants growing on perlite. In the second trial, the highest result for the number of leaves (28 leaves), diameter of cabbage (26.7 cm), fresh weight (118.8 g) and dry weight (9.5 g) of the aerial part were achieved by the plants that were grown in coconut fiber. The nutrient solutions were analyzed after each irrigation cycle to verify the possibility of their discharge into the environment. Several parameters were analyzed: pH, conductivity, redox potential, nitrates, nitrites, ammoniacal nitrogen, chlorides, hardness, calcium, phosphates, sodium, potassium, chemical oxygen demand (COD) and magnesium. Ammoniacal nitrogen was found to be the only nutrient that can limits the discharge of nutrient solutions into the environment. It was also proven that the plants, besides obtaining the nutrients necessary for their development in the semi-hydroponic system with the nutrient solution with pre-treated residual water, also functioned as a purification system, allowing the said nutrient solution to be discharged into the environment at the end of each cycle.
Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote the solubilization of insoluble phosphate complexes, together benefiting plant nutrition. The use of these organisms in combination with minerals or rocks that provide nutrients is another alternative to maintain crop productivity. The objective of this work was to combine AMF and S with pyroclastic materials (ashes and pumicites) from the Puyehue volcano and phosphoric rocks (PR) from the Río Chico Group (Chubut) and to evaluate the performance of these mixtures as substrates for potted production of Lactuca sativa. To formulate the substrates, a mixture of Ter-rafertil® with ashes was used as a base. Penicillium thomii was the S and spores of the fungus Rhizophagus intraradices (AEGIS® Irriga) served as the source of AMF. Various combinations of microorganisms and the addition or not of RP were evaluated. The treatments were: (1) substrate; (2) substrate + AMF; (3) substrate + S; (4) substrate + AMF + S; (5) substrate: PR; (6) substrate: PR + AMF; (7) substrate: PR + S, and (8) substrate: PR + AMF + S. There were 3 replicates per treatment. The parameters evaluated were total and assimilable P content in the substrate, P in plant tissue and dry biomass. All of them were significantly higher in the plants grown in the substrate added with PR and inoculated with S and AMF. This work confirms that the S/AMF combination with volcanic ashes from Puyehue and PR from Grupo Río Chico formulated with a commercial substrate promote the growth of L. sativa. Thus, it is possible to increase the added value of geomaterials of national origin.
Copyright © by EnPress Publisher. All rights reserved.