The reduction of biodiversity and the decline in wildlife populations are urgent environmental issues with devasting consequences for ecosystems and human health. As a result, the protection of wildlife and biodiversity has emerged as one of humanity's greatest goals, not only for protecting and maintaining human health but also for environmental, economic, and social well-being. In recent years, people have become increasingly aware of the importance and effectiveness of wildlife conservation efforts alongside environmental protection measures, sustainable agricultural practices and non-harmful production procedures and services. This study describes the development and implementation of a labeling scheme for wildlife and biodiversity protection for products or services. The label is designed to encourage the adoption of sustainable and environmentally friendly production methods and services that will contribute to biodiversity conservation and the harmonic coexistence of human-wildlife. Moreover, using a case study approach, the research presents an innovative information system designed to streamline the label-awarding process, ensuring transparency and efficiency. The established system evaluates the sustainability practices and measures implemented by businesses, with a focus on honey production in this case. Additionally, the study explores the broader social implications of the label, particularly its potential to engage consumers and promote awareness of biodiversity conservation.
According to the United Nations, by 2050, about 68% of the world’s population will live in urban areas. This population increase requires environmental resilience and planning ability to reduce the negative environmental impacts associated with growth. In this scenario, life cycle analysis, whose standards were introduced by ISO 14000 series, is an essential tool. From this perspective, smart cities whose concern about environmental sustainability is paramount corroborating SDG 11. This study aims to provide a holistic view of environmental technologies developed by Brazilian inventors, focused on life cycle analysis, which promotes innovation by helping cities build greener, more efficient, resilient, and sustainable environments. The methodology of this article was an exploratory study and investigated the scenario of patents in the life cycle. 209 patent processes with Brazilian inventors were found in the Espacenet database. Analyzing each of the results individually revealed processes related to air quality, solid waste, and environmental sanitation. The review of patent processes allowed mapping of the technological advances linked to life cycle analysis, finding that the system is still little explored and can present competitive advantages for cities.
While there has been much discussion about the large infrastructure needs in Asia and the Pacific, less attention has been paid to public expenditure efficiency in infrastructure services delivery. New constructions are not the only solution, especially when governments have limited capital to invest. Globally, new infrastructure projects face delays and cost overruns, leading to an inefficient use of public resources. The root causes include the lack of transparency in project selection, the lack of project preparation, the silo approach by public entities in assessing feasibility studies, and the lack of public sector capacity to fully develop a bankable pipeline of projects. To tackle these issues, governments need a smarter investment approach and to do so, enhancing public service efficiency is very crucial. The paper suggests a “whole life cycle” (WLC) approach as the main strategic solution for the discussed issues and challenges. We expand the definition of WLC to include the entire life cycle of the infrastructure asset from need identification to its disposal. The stages comprise planning, preparation, procurement, design, construction, operation and maintenance, and disposal. This is because we believe any efficient or inefficient decision throughout such a wide life cycle influences the quality of public services. Hence, in this holistic approach, infrastructure life cycle consists of four phases: planning, preparation, procurement, and implementation. Governments could enhance public efficiency and thus improve access to finance throughout the WLC by several solutions. These are (i) preparing infrastructure master plan and pipelines and long-term budgeting during the planning phase; (ii) establishing framework and guidelines and improving governance during preparation phase; (iii) promoting standardization, transparency, open government, and contractual consistency during the procurement phase; and finally (iv) continued role of government and total asset management during the implementation phase. In addition to these phase-specific means, key WLC solutions include proper use of technology, capacity building, and private participation in general and public-private partnership (PPP) in particular.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
In November 2018, the sample plot survey method was used to analyze the population characteristics of Lithocarpus polystachyus in the natural secondary forest with different disturbance intensity in Jianning, Fujian Province, and compile its population static life table. The results showed that the number of individuals in the population was small, but it was clustered. With the increase of interference intensity, the first and second age seedlings and young trees decreased. The population types affected by human disturbance are all lacking level V trees, and the population type belongs to primary population (N1); The undisturbed population lacks level I and II seedlings and young trees, but there are level V trees, and the population type belongs to medium decline population (S2). In general, all populations of L. polystachyus are unstable and belong to the transitional type. In the static life table, the mortality of level I and II seedlings and young trees is high, the survival rate has a small peak in level III and IV, and then the survival rate decreases rapidly, and the average life expectation of level II is the highest. It shows that artificial conservation measures and appropriate space re-lease are needed to maintain the stability of the population.
Copyright © by EnPress Publisher. All rights reserved.